一次函数第一课时(一次函数的概念)课件ppt.pptx
-
资源ID:32070759
资源大小:599.42KB
全文页数:17页
- 资源格式: PPTX
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
一次函数第一课时(一次函数的概念)课件ppt.pptx
19.2.2 一次函数第一课时 (一次函数概念)数学人教版 八年级下新知导入新知导入1.1.正比例函数的概念:一般地,形如正比例函数的概念:一般地,形如_(K K是是_ _ ,K _ K _ ) 的函数,叫做的函数,叫做 ,其中,其中K K叫做叫做_ _ 。2.2.下列函数是正比例函数的是:下列函数是正比例函数的是: _ _。 A.y=-4x B.y=x+2 C.y= D.y= E.y=A.y=-4x B.y=x+2 C.y= D.y= E.y=x x2 2 +1 F.y= +1 +1 F.y= +1一、知识回顾:一、知识回顾:x32-x3. 正比例函数正比例函数y=kx,(1)若比例系数为)若比例系数为 5,则函数关系式为,则函数关系式为 . (2)若经过()若经过(5,1),则函数关系式),则函数关系式 .4. 已知已知 y=(m-2)x ,m= 时,时,y 是是x 的正比例函数。的正比例函数。5. 函数函数y=5x的图象在第的图象在第 象限,经过点(象限,经过点(0 , )与点()与点(1, ),), y随随x的增大而的增大而 .y=kxy=kx常数常数0正比例函数正比例函数比例系数比例系数A A、D Dy=-5xy=-5x5xy 1m0二、二、四四0-5减小减小导入新课问题:某登山队大本营所在地的气温为问题:某登山队大本营所在地的气温为55,海拔每升高,海拔每升高1km1km气温气温 下降下降6.6.登山队员由大本营向上登高登山队员由大本营向上登高x x kmkm时,他们所在位时,他们所在位 置的气温是置的气温是y y.y=5-6x(1)试用函数解析式表示y与x的关系;(2)它是正比例函数吗?y=5-6x 不是不是正比例函数正比例函数新知导入新知导入二、创设情境二、创设情境(3 3)它与正比例函数有什么不同?这种形式的函数还会有吗?)它与正比例函数有什么不同?这种形式的函数还会有吗?讲授新课问题问题1 1 写出写出下列下列问题问题中中的的函数关系函数关系:(1 1)有人发现,在)有人发现,在20 20 25 25 时蟋蟀每分鸣叫次数时蟋蟀每分鸣叫次数c c 与温度与温度t t(单位单位:)有关)有关,且且c c的值约是的值约是t t的的7 7倍与倍与3535的差的差;(2 2)一种计算成年人标准体重)一种计算成年人标准体重G G(单位:(单位:kgkg)的方法是,以)的方法是,以cmcm为单位量出为单位量出身高值身高值 h h ,再,再减常数减常数105105,所得差是,所得差是G G 的值的值;(3 3)某城市的市内电话的月收费额)某城市的市内电话的月收费额 y y(单位:元)包括月租费(单位:元)包括月租费2222元和拨打元和拨打电话电话 x x min min 的计时费(按的计时费(按0.10.1元元/ /minmin收取)收取);(4 4)把一个长)把一个长10 cm10 cm,宽,宽5 cm5 cm的矩形的长减少的矩形的长减少 x x cmcm,宽不变,矩形面积,宽不变,矩形面积 y y(单位:(单位:cmcm2 2)随)随x x的值而变化的值而变化新知讲解新知讲解三、探究新知三、探究新知新知讲解新知讲解问题问题2 2 观察以上出现的观察以上出现的四四个函数解析式,很显然它们不个函数解析式,很显然它们不 是正比例函数,那么这些函数解析式有什么共同特征呢?是正比例函数,那么这些函数解析式有什么共同特征呢?三、探究新知三、探究新知归纳发现归纳发现:它们都是常数与自变量的它们都是常数与自变量的 与常数的与常数的 的形式的形式. .乘积乘积和和(1) c = 7 t - 35(2) G = h -105(3) y = 0.1 x + 22(4) y = -5 x + 50问题3 观察以上出现的四个函数解析式,这些函数解析式可以写成 什么形式?我们把它们命名为什么函数呢?yk(常数)x=b(常数)+(1) c = 7 t - 35(2) G = h -105(3) y = 0.1 x + 22(4) y = -5 x + 50一般地,形如一般地,形如y=kx+b y=kx+b (k k, b b 是常数,是常数,k0k0)的函数)的函数,叫做,叫做一次函数一次函数. .思考:当当b=0时,一次函数时,一次函数y=kx+b变为什么函数?变为什么函数? 一次函数与正比例函数有什么关系? 当b=0时,y=kx+b 即y=kx(k0),此时该一次函数是正比例函数. 正比例函数是特殊的一次函数.新知讲解新知讲解三、探究新知三、探究新知 一次函数的特点如下:一次函数的特点如下:(1 1)解析式中自变量)解析式中自变量x x的次数是的次数是 次次; ;(2 2)比例系数)比例系数 ;(3 3)常数项:)常数项:1 1k0k0通常不为通常不为0 0,但也可以等于,但也可以等于0 0. .正比例函数正比例函数一次函数一次函数定义定义表达式表达式一般地,形如一般地,形如( k( k是常数,是常数,k0 )k0 )的函数的函数 一般地,形如一般地,形如( k( k,b b是常数,是常数,k0 )k0 )的函数的函数( ( k k是常数,是常数,k k0 )0 )( ( k k,b b是常数,是常数,k k0 )0 )当当b=0b=0时,时,一次函数是正比例函数.正比例函数是特殊的一次函数正比例函数是特殊的一次函数. . 新知讲解新知讲解(7) ; 1.下列函数中哪些是一次函数,哪些又是正比例函数?0 51= =- - . .- -yx12= =- -xy(4) ; (5) ; 213=-=-yx24=-=-yx()32- -= =xy(6) ; (8) . . 解:(1)(4)(5)(7)(8)是一次函数, (1)是正比例函数课堂练习课堂练习四、运用新知四、运用新知注意:正比例函数是特殊的一次函数,因此,(注意:正比例函数是特殊的一次函数,因此,(1 1)既是一次函数又是正比例函数)既是一次函数又是正比例函数xy31)(xy52)(6232xy)(课堂练习课堂练习四、运用新知四、运用新知 2 2. .下列说法正确的是(下列说法正确的是( ) A.A.一次函数是正比例函数一次函数是正比例函数. B. B.正比例函数不是一次函数正比例函数不是一次函数. . C. C.不是正比例函数就不是一次函数不是正比例函数就不是一次函数. D. D.正比例函数是一次函数正比例函数是一次函数. .D五、典例精析例例1 1 已知函数已知函数y=(m-1)x+1-my=(m-1)x+1-m2 2(1 1)当)当m m为何值时,这个函数是一次函数为何值时,这个函数是一次函数? ?解:由题意可得解:由题意可得 m-1m-100,解得,解得m m1.1.即即m m1 1时,这个函数是一次函数时,这个函数是一次函数. . 是一次函数的条件:是一次函数的条件: (1 1)k 0k 0;(2 2)自变量)自变量x x的指数是的指数是“1”1”ykx b(2 2)当当m m为何值时,这个函数是为何值时,这个函数是正比例函数正比例函数? ?解:由题意可得解:由题意可得m-1m-100,1-m1-m2 2=0=0,解得,解得m=-1.m=-1.即即m=-1m=-1时,这个函数是正比例函数时,这个函数是正比例函数. . 是正比例函数的条件:是正比例函数的条件: (1 1)k 0k 0(2 2)自变量)自变量x x的指数是的指数是“1”1”(3 3)b=0b=0ykx b新知讲解新知讲解变式训练 1、已知函数y=2x|m|+(m+1).(1)若这个函数是一次函数,求m的值;(2)若这个函数是正比例函数,求m的值.解:(解:(1 1)这个函数是一次函数这个函数是一次函数 |m|=1 |m|=1 m=m=1.1.(2 2)这个函数是正比例函数这个函数是正比例函数 |m|=1 |m|=1 且且 m+1=0.m+1=0. m = m =1 1且且m=-1m=-1 m=-1 m=-1课堂练习课堂练习五、典例精析新知讲解新知讲解例例2 :已知一次函数已知一次函数 y=kx+b,当当 x=1时时,y=1;当当x=-1时时,y=-5 求求 k 和和 b 的值的值解:因为解:因为 当当x=1x=1时,时,y=y=1 1;当;当x=-1x=-1时,时,y=1y=1 所以所以51bkbk解得解得k k = = 3 3,b b = = -2-2. .课堂练习课堂练习2、如果、如果y=(m+2)x +1是一次函数,那么是一次函数,那么m= _ m2-323、当当m= _ 时,函数时,函数y=xm+4x-5(x0)是一个一次函数。)是一个一次函数。0或或1 4 4、已知一次函数已知一次函数 y=kx+b,当当 x=1时时,y=1;当当x=2时时,y=-1 求求 一次函数的解析式y=-2x+3拓展提高拓展提高例例3. 3. 如果长方形的周长是如果长方形的周长是30cm30cm,长是,长是xcmxcm,宽,宽是是ycm.ycm.(1)(1)写出写出y y与与x x之间的函数解析式,它是一次函数吗?之间的函数解析式,它是一次函数吗?(2)(2)若若长是宽的长是宽的2 2倍,求长方形的面积倍,求长方形的面积. . 解:(1) y=15-x,是一次函数是一次函数. .(2)(2)由题意可得由题意可得x=2(15-x).解得解得x=10,所以所以y=15-x=5.长方形的面积为长方形的面积为105=50(cm2).五、一次函数的简单应用 1、 汽车油箱中原有油汽车油箱中原有油5050升,如果汽车每行驶升,如果汽车每行驶5050千米耗油千米耗油9 9升升, , 求油箱的油量求油箱的油量y y(单位:升)随行驶时间(单位:升)随行驶时间x x(单位:时)变化的函(单位:时)变化的函数关系式,并写出自变量的取值范围,数关系式,并写出自变量的取值范围,y y是是x x 的一次函数吗?的一次函数吗?950解:油量解:油量y与行驶时间与行驶时间x的函数关系式为的函数关系式为:950函数函数,是是x的一次函数一次函数.自变量自变量x x的取值范围是的取值范围是 0 x50.课堂练习课堂练习五、五、一次函数的简单应用一次函数的简单应用2 2、一盘蚊香长、一盘蚊香长105cm105cm,点燃时每小时缩短,点燃时每小时缩短10cm.10cm.(1)(1)请写出点燃后蚊香的长请写出点燃后蚊香的长y y(cm)(cm)与蚊香燃烧时间与蚊香燃烧时间t t(h)(h) 之间的函数之间的函数 关系式;关系式;(2)(2)该蚊香可燃烧多长时间?该蚊香可燃烧多长时间?y= -10 t + 105当当 y=0 0 时时,t =10.510.5该蚊香可燃烧该蚊香可燃烧1010小时小时3030分钟分钟. .课堂练习课堂练习五、五、一次函数的简单应用一次函数的简单应用1、什么是一次函数?一般地,形如一般地,形如y=kx+by=kx+b(k k、b b是常数,是常数,k0k0)的函数,)的函数, 叫做一次函数叫做一次函数2、一次函数与正比例函数有何关系?正比例函数是特殊的一次函数正比例函数是特殊的一次函数3、一次函数表达式中的k、b以及x的次数有何特点?一次项系数一次项系数k0k0,自变量,自变量x x的次数是的次数是1 1,常数项,常数项b b为任意数,当常数项为任意数,当常数项=0=0时,是正比例函数时,是正比例函数. .课堂总结课堂总结