欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年小学五年级-奥数题 .pdf

    • 资源ID:32129953       资源大小:67.37KB        全文页数:13页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年小学五年级-奥数题 .pdf

    小学五年级 - 奥数题过桥问题( 1)1. 一列火车经过南京长江大桥, 大桥长 6700米,这列火车长 140 米,火车每分钟行 400 米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。 根据数量关系式, 我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1 分钟。 2. 一列火车长 200 米,全车通过长 700 米的桥需要 30 秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。总路程:(米)火车速度:(米)答:这列火车每秒行30 米。 3. 一列火车长 240 米,这列火车每秒行 15 米,从车头进山洞到全车出山洞共用 20 秒,山洞长多少米?分析与解答: 火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥; 全车出洞就相当于车尾下桥。 这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件, 那么我们就要利用题中所给的车速和通过时间求出总路程。总路程:山洞长:(米)答:这个山洞长 60 米。和倍问题1. 秦奋和妈妈的年龄加在一起是40 岁,妈妈的年龄是秦奋年龄的4 倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1 倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5 倍是 40 岁,也就是( 41)倍,也可以理解为5份是 40 岁,那么求 1 倍是多少,接着再求4 倍是多少?(1)秦奋和妈妈年龄倍数和是:415(倍)(2)秦奋的年龄: 4058 岁(3)妈妈的年龄: 8432 岁综合:40( 41)8 岁8432 岁为了保证此题的正确,验证(1)83240岁(2)3284(倍)计算结果符合条件,所以解题正确。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 13 页2. 甲乙两架飞机同时从机场向相反方向飞行,3 小时共飞行 3600 千米,甲的速度是乙的 2 倍,求它们的速度各是多少?已知两架飞机 3 小时共飞行 3600 千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。 看图可知, 这个速度和相当于乙飞机速度的3 倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。甲乙飞机的速度分别每小时行800 千米、 400千米。3. 弟弟有课外书 20 本,哥哥有课外书25 本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的 2 倍?思考:( 1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?(3)如果把哥哥剩下的课外书看作1 倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?思考以上几个问题的基础上, 再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1 倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2 倍, 也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3 倍,而兄弟俩人课外书的总数始终是不变的数量。(1)兄弟俩共有课外书的数量是202545。(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是213。(3)哥哥剩下的课外书的本数是45315。(4)哥哥给弟弟课外书的本数是251510。试着列出综合算式:4. 甲乙两个粮库原来共存粮170 吨,后来从甲库运出 30 吨,给乙库运进 10 吨,这时甲库存粮是乙库存粮的2 倍,两个粮库原来各存粮多少吨?根据甲乙两个粮库原来共存粮170 吨,后来从甲库运出30 吨,给乙库运进 10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1 倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。甲库原存粮 130 吨,乙库原存粮 40 吨。列方程组解应用题(一)1. 用白铁皮做罐头盒,每张铁皮可制盒身16 个,或制盒底 43 个,一个盒身和两个盒底配成一个罐头盒,现有150 张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数, 一个是制盒底的铁皮张数, 这样就可以用两个未知数表示,要求出这两个未知数, 就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。两个等量关系是: A做盒身张数 +做盒底的张数 =铁皮总张数 B制出的盒身数 2=制出的盒底数用 86 张白铁皮做盒身, 64 张白铁皮做盒底。奇数与偶数(一)其实,在日常生活中同学们就已经接触了很多的奇数、偶数。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 13 页凡是能被 2 整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2 整除的数叫奇数,大于零的奇数又叫单数。因为偶数是 2 的倍数,所以通常用这个式子来表示偶数(这里是整数)。因为任何奇数除以 2 其余数都是 1,所以通常用式子来表示奇数(这里 是整数)。奇数和偶数有许多性质,常用的有:性质 1 两个偶数的和或者差仍然是偶数。例如: 8+4=12,8-4=4 等。两个奇数的和或差也是偶数。例如: 9+3=12,9-3=6 等。奇数与偶数的和或差是奇数。例如: 9+4=13,9-4=5 等。单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。性质 2 奇数与奇数的积是奇数。偶数与整数的积是偶数。性质 3 任何一个奇数一定不等于任何一个偶数。1. 有 5 张扑克牌,画面向上。小明每次翻转其中的4 张,那么,他能在翻动若干次后,使 5 张牌的画面都向下吗?同学们可以试验一下, 只有将一张牌翻动奇数次, 才能使它的画面由向上变为向下。要想使 5 张牌的画面都向下,那么每张牌都要翻动奇数次。 5 个奇数的和是奇数, 所以翻动的总张数为奇数时才能使5 张牌的牌面都向下。而小明每次翻动 4 张,不管翻多少次,翻动的总张数都是偶数。所以无论他翻动多少次,都不能使5 张牌画面都向下。2. 甲盒中放有 180 个白色围棋子和 181 个黑色围棋子,乙盒中放有181 个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色, 他就从乙盒中拿出一个白子放入甲盒; 如果两个棋子不同色, 他就把黑子放回甲盒。 那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。 所以他每拿一次, 甲盒子中的棋子数就减少一个,所以他拿 180+181-1=360 次后,甲盒里只剩下一个棋子。如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1 的奇数只有 1,所以甲盒里剩下的一个棋子应该是黑子。奥赛专题 - 称球问题例 1 有 4 堆外表上一样的球,每堆4 个。已知其中三堆是正品、一堆是次品,正品球每个重 10 克,次品球每个重 11克,请你用天平只称一次, 把是次品的那堆找出来。解 :依次从第一、二、三、四堆球中,各取1、2、3、4 个球,这 10 个球一起放到天平上去称,总重量比100 克多几克,第几堆就是次品球。2 有 27 个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 13 页解 :第一次:把 27 个球分为三堆,每堆9 个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。第二次:把第一次判定为较轻的一堆又分成三堆,每堆 3 个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。第三次: 从第二次找出的较轻的一堆3 个球中取出 2 个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。例 3 把 10 个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。解:把 10 个球分成 3 个、3 个、3 个、1 个四组,将四组球及其重量分别用A、B、C、D表示。把 A、B两组分别放在天平的两个盘上去称,则(1)若 A=B ,则 A、B中都是正品,再称B、C。如 B=C ,显然 D中的那个球是次品;如 BC ,则次品在 C中且次品比正品轻,再在C中取出 2 个球来称,便可得出结论。如 BC ,仿照 BC的情况也可得出结论。(2)若 AB,则 C、D中都是正品,再称B、C ,则有 B=C ,或 BC (BC不可能,为什么?)如B=C ,则次品在 A中且次品比正品重,再在A中取出 2 个球来称,便可得出结论;如BC,仿前也可得出结论。(3)若 AB,类似于 AB的情况,可分析得出结论。奥赛专题 - 抽屉原理【例 1】一个小组共有 13 名同学,其中至少有2 名同学同一个月过生日。为什么?【分析】每年里共有12 个月,任何一个人的生日,一定在其中的某一个月。如果把这 12 个月看成 12 个“抽屉”, 把 13 名同学的生日看成13 只“苹果”,把13 只苹果放进 12个抽屉里,一定有一个抽屉里至少放2 个苹果,也就是说,至少有 2 名同学在同一个月过生日。【例 2 】任意 4 个自然数,其中至少有两个数的差是3 的倍数。这是为什么?【分析与解】首先我们要弄清这样一条规律: 如果两个自然数除以3 的余数相同,那么这两个自然数的差是3 的倍数。而任何一个自然数被3 除的余数,或者是 0,或者是 1,或者是 2,根据这三种情况,可以把自然数分成3 类,这 3 种类型就是我们要制造的 3 个“抽屉”。 我们把 4 个数看作“苹果”, 根据抽屉原理, 必定有一个抽屉里至少有2 个数。换句话说, 4 个自然数分成 3 类,至少有两个是同一类。既然是同一类,那么这两个数被3 除的余数就一定相同。所以,任意4个自然数,至少有2 个自然数的差是 3 的倍数。【例 3】有规格尺寸相同的5 种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3 双袜子(袜子无左、右之分)?【分析与解】试想一下,从箱中取出6 只、9 只袜子,能配成 3 双袜子吗?回答是否定的。按 5 种颜色制作 5 个抽屉,根据抽屉原理1,只要取出 6 只袜子就总有一只抽屉里装 2 只,这 2 只就可配成一双。拿走这一双,尚剩4 只,如果再补进 2 只又成 6 只,再根据抽屉原理1,又可配成一双拿走。如果再补进2 只,又可取得第3 双。所以,至少要取622=10只袜子,就一定会配成3 双。思考: 1. 能用抽屉原理 2,直接得到结果吗?2. 把题中的要求改为 3 双不同色袜子,至少应取出多少只? 3. 把题中的要求改为3 双同色袜子,又如何?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 13 页【例 4】一个布袋中有 35 个同样大小的木球,其中白、黄、红三种颜色球各有10 个,另外还有 3 个蓝色球、 2 个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4 个是同一颜色的球?【分析与解】从最“不利”的取出情况入手。最不利的情况是首先取出的5 个球中,有 3 个是蓝色球、 2 个绿色球。接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于( 4-1)3=9个,即至少应取出 10 个球,就可以保证取出的球至少有4 个是同一抽屉(同一颜色)里的球。故总共至少应取出 105=15个球,才能符合要求。思考:把题中要求改为4 个不同色,或者是两两同色,情形又如何?当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它抽屉原理,这是你的一条“决胜”之路。奥赛专题 - 还原问题【例 1】某人去银行取款,第一次取了存款的一半多50 元,第二次取了余下的一半多 100 元。这时他的存折上还剩1250 元。他原有存款多少元?【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。由“第二次取余下的一半多100元”可知,“余下的一半少100 元”是 1250元,从而“余下的一半”是 1250+100=1350(元)余下的钱(余下一半钱的2 倍)是:13502=2700(元)用同样道理可算出“存款的一半”和“原有存款”。综合算式是: (1250+100)2+502=5500(元)还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前) 的数量。解还原问题, 通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。【例 2】有 26块砖,兄弟 2 人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5 块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?【分析】我们得先算出最后哥哥、 弟弟各挑多少块。 只要解一个“和差问题”就知道:哥哥挑“( 26+2)2=14”块,弟弟挑“ 26- 14=12”块。提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原, 减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。对于一些比较复杂的还原问题, 要学会列表,借助表格倒推, 既能理清数量关系,又便于验算。奥赛专题 - 鸡兔同笼问题例 1 鸡兔同笼,头共46,足共 128,鸡兔各几只? 分析 :如果 46 只都是兔,一共应有446=184只脚,这和已知的128 只脚相比多了 184-128=56 只脚. 如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚. 那么, 46 只兔里应该换进几只鸡才能使56 只脚的差数就没有了呢?显然,562=28,只要用 28 只鸡去置换 28 只兔就行了 . 所以,鸡的只数就是28,兔的只数是 46-28=18。解:鸡有多少只?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 13 页(46-128)( 4-2)=(184-128)2 =562 =28(只)免有多少只?46-28=18(只)答:鸡有 28 只,免有 18 只。例 2 鸡与兔共有 100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析 : 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差 . 这又如何解答呢?假设 100 只全是鸡,那么脚的总数是2100=200(只)这时兔的脚数为0,鸡脚比兔脚多 200 只,而实际上鸡脚比兔脚多80 只. 因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡. 每把一只兔换成鸡,鸡的脚数将增加 2 只,兔的脚数减少4 只. 那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有1206=20(只) . 有鸡( 100-20)=80(只)。解:(2100-80)( 2+4)=20(只)。100-20=80(只)。答:鸡与兔分别有80 只和 20 只。例 3 红英小学三年级有3 个班共 135 人,二班比一班多5 人,三班比二班少7人,三个班各有多少人? 分析 1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了 . 由此得到启示,是否可以通过假设三个班人数同样多来分析求解。结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5 人. 三班人数要比实际人数多7-5=2(人). 那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?解法 1:一班: 135-5+ (7-5) 3=1323 =44(人)二班: 44+5=49(人)三班: 49-7=42(人)答:三年级一班、二班、三班分别有44 人、 49 人和 42 人。 分析 2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7 人. 这时的总人数又该是多少?解法 2:(135+ 5+ 7 )3 = 147 3 = 49 (人)49-5=44(人), 49-7=42(人)答:三年级一班、二班、三班分别有44 人、49人和 42 人。例 4 刘老师带了 41 名同学去北海公园划船,共租了10 条船. 每条大船坐 6 人,每条小船坐 4 人,问大船、小船各租几条? 分析 我们分步来考虑:假设租的 10 条船都是大船,那么船上应该坐610= 60(人)。假设后的总人数比实际人数多了 60- (41+1)=18(人),多的原因是把小船坐的 4 人都假设成坐 6 人。一条小船当成大船多出2 人,多出的 18 人是把 182=9(条)小船当成大船。解:6 10-(41+1 )( 6-4)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 13 页= 182=9(条) 10-9=1(条)答:有 9 条小船, 1 条大船。例 5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿 118条,翅膀 20 对(蜘蛛 8条腿;蜻蜓 6 条腿,两对翅膀;蝉6 条腿,一对翅膀),求蜻蜓有多少只? 分析 这是在鸡兔同笼基础上发展变化的问题. 观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛 8 条腿. 因此,可先从腿数入手, 求出蜘蛛的只数 . 我们假设三种动物都是 6 条腿,则总腿数为618=108(条),所差 118-108=10 (条),必然是由于少算了蜘蛛的腿数而造成的. 所以,应有( 118-108)(8-6)=5(只)蜘蛛. 这样剩下的 18-5=13(只)便是蜻蜓和蝉的只数 . 再从翅膀数入手, 假设 13只都是蝉,则总翅膀数113=13(对),比实际数少 20-13 7(对),这是由于蜻蜓有两对翅膀, 而我们只按一对翅膀计算所差, 这样蜻蜓只数可求7 (2-1)=7(只) . 解:假设蜘蛛也是6 条腿,三种动物共有多少条腿?618=108(条)有蜘蛛多少只?(118-108)( 8-6)=5(只)蜻蜒、蝉共有多少只?18-5=13(只)假设蜻蜒也是一对翅膀,共有多少对翅膀?113=13(对)蜻蜒多少只?(20-13) 2 -1)= 7(只)答:蜻蜒有 7 只. 包含与排除1、某班有 40 名学生,其中有 15 人参加数学小组, 18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?解:两个小组共有( 15+18)-10=23(人),都不参加的有 40-23=17(人)答:有 17 人两个小组都不参加。- 2、某班 45 个学生参加期末考试,成绩公布后,数学得满分的有10 人,数学及语文成绩均得满分的有3 人,这两科都没有得满分的有29 人。那么语文成绩得满分的有多少人?解:45-29-10+3=9(人)答:语文成绩得满分的有9 人。3、50 名同学面向老师站成一行。老师先让大家从左至右按1,2,3,49,50 依次报数;再让报数是4 的倍数的同学向后转,接着又让报数是6 的倍数的同学向后转。问:现在面向老师的同学还有多少名?解:4 的倍数有 50/4 商 12 个,6 的倍数有 50/6 商 8 个,既是 4 又是 6 的倍数有50/12 商 4 个。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 13 页4 的倍数向后转人数 =12,6 的倍数向后转共 8 人,其中 4 人向后,4 人从后转回。面向老师的人数 =50-12=38(人)答:现在面向老师的同学还有38 名。4、在游艺会上,有100 名同学抽到了标签分别为1 至 100 的奖券。按奖券标签号发放奖品的规则如下: (1)标签号为 2 的倍数,奖 2 支铅笔;( 2)标签号为3 的倍数,奖 3 支铅笔;( 3)标签号既是 2 的倍数,又是 3 的倍数可重复领奖;(4)其他标签号均奖1 支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?解: 2 的倍数有 100/2 商 50 个, 3 的倍数有 100/3 商 33个, 2 和 3 人倍数有 100/6商 16 个。领 2 支的共准备( 5016)*2=68,领 3 支的共准备( 3316)*3=51,重复领的共准备 16*(2+3)=80,其余准备 100-(50+33-16)*1=33 共需要 68+51+80+33=232 (支)答:游艺会为该项活动准备的奖品铅笔共有232 支。5、有一根长为 180 厘米的绳子,从一端开始每隔3 厘米作一记号,每隔4 厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?解:3 厘米的记号: 180/3=60,最后到头了不划, 60-1=59 个4 厘米记号: 180/4=45,45-1=44 个,重复的记号: 180/12=15,15-1=14 个,所以绳子中间实际有记号59+44-14=89 个。剪 89 次,变成 89+1=90段答:绳子共被剪成了90 段。6、东河小学画展上展出了许多幅画,其中有16 幅画不是六年级的,有15 幅画不是五年级的。现知道五、六年级共有 25 幅画,那么其他年级的画共有多少幅?解:1,2,3,4,5 年级共有 16,1,2,3,4,6 年级共有 15,5,6 年级共有25 所以总共有( 16+15+25 )/2=28(幅), 1,2,3,4 年级共有 28-25=3(幅)答:其他年级的画共有3 幅。- 7、有若干卡片,每张卡片上写着一个数,它是3 的倍数或 4 的倍数,其中标有3 的倍数的卡片占2/3 ,标有 4 的倍数的卡片占 3/4 ,标有 12 的倍数的卡片有 15张。那么,这些卡片一共有多少张?解:12 的倍数有 2/3+3/4-1=5/12 ,15/ (5/12 )=36(张)答:这些卡片一共有36 张。- - 8、 在从 1 至 1000的自然数中,既不能被 5 除尽, 又不能被 7 除尽的数有多少个?解:5 的倍数有 1000/5 商 200 个,7 的倍数有 1000/7 商 142 个,既是 5 又是 7的倍数有 1000/35 商 28 个。5 和 7 的倍数共有 200+142-28=314个。1000-314=686 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 13 页答:既不能被 5 除尽,又不能被 7 除尽的数有 686 个。- 9、五年级三班学生参加课外兴趣小组,每人至少参加一项。 其中有 25 人参加自然兴趣小组, 35 人参加美术兴趣小组, 27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人,参加自然同时又参加美术兴趣小组的有8 人,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然 3 科兴趣小组都参加的有 4 人。求这个班的学生人数。解:25+35+27-(8+12+9)+4=62(人)答:这个班的学生人数是62 人。- - 10、如图 8-1,已知甲、乙、丙 3 个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而 3 个圆覆盖的总面积为73。求阴影部分的面积。解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2 阴影部分面积 =73-(6+8+5)+2*2=58 答:阴影部分的面积是58。_ - 作者: abc - 发布时间: 2004-12-12 15:45:02 - 11、四年级一班有 46 名学生参加 3 项课外活动。其中有24 人参加了数学小组,20 人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍,又是 3 项活动都参加人数的7 倍,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的2 倍, 既参加数学小组又参加语文小组的有10 人。求参加文艺小组的人数。解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21 答:参加文艺小组的人数是21 人。_ - 作者: abc - 发布时间: 2004-12-12 15:45:43 - 12、 图书室有 100本书,借阅图书者需要在图书上签名。 已知在 100本书中有甲、乙、丙签名的分别有33,44 和 55 本,其中同时有甲、乙签名的图书为29 本,同时有甲、丙签名的图书有25 本,同时有乙、丙签名的图书有36 本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙 +甲丙+乙丙) +甲乙丙=33+44+55-(29+25+36 )+甲乙丙 =42+甲乙丙,当甲乙丙最大时,三人看过的书精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 13 页最多,因为甲、丙共同看过的书只有25 本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25 本。三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)答:这批图书中最少有33 本没有被甲、乙、丙中的任何一人借阅过。_ - 作者: abc - 发布时间: 2004-12-12 15:46:53 - 13、如图 8-2,5 条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?解:五条线上右发有 5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10 个交叉点,所以最少有9970-10=9960 个红点答:在这个五角星上红色点最少有9960 个。此主题相关图片如下:_ - 作者: abc - 发布时间: 2004-12-12 15:47:12 - 14、甲、乙、丙同时给 100 盆花浇水。已知甲浇了78 盆,乙浇了 68 盆,丙浇了58 盆,那么 3人都浇过的花最少有多少盆?解:甲和乙必有 78+68-100=46 盆共同浇过,丙有100-58=42 没浇过,所以 3 人都浇过的最少有 46-42=4(盆)答:3 人都浇过的花最少有4 盆。_ - 作者: abc - 发布时间: 2004-12-12 15:52:54 - 15、甲、乙、丙都在读同一本故事书,书中有100 个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75 个故事,乙读了 60 个故事,丙读了 52个故事。那么甲、乙、丙3 人共同读过的故事最少有多少个?解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这 12 个故事。答:甲、乙、丙 3 人共同读过的故事最少有12 个。_ - 作者: abc - 发布时间: 2004-12-12 15:53:43 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 13 页- 15、甲、乙、丙都在读同一本故事书,书中有100 个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75 个故事,乙读了 60 个故事,丙读了 52个故事。那么甲、乙、丙3 人共同读过的故事最少有多少个?解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这 12 个故事。答:甲、乙、丙 3 人共同读过的故事最少有12 个。_ - 作者: cxcbz - 发布时间: 2004-12-13 21:53:23 - 以下是引用 abc 在 2004-12-12 15:42:17的发言:8、 在从 1 至 1000的自然数中,既不能被 5 除尽, 又不能被 7 除尽的数有多少个?解:5 的倍数有 1000/5 商 200 个,7 的倍数有 1000/7 商 142 个,既是 5 又是 7的倍数有 1000/35 商 28 个。5 和 7 的倍数共有 200+142-28=314个。1000-314=686 答:既不能被 5 除尽,又不能被 7 除尽的数有 686 个。题中的除尽应该是整除吧. _ - 作者: cxcbz - 发布时间: 2004-12-13 21:56:00 - 以下是引用 abc 在 2004-12-12 15:45:02的发言:11、四年级一班有 46 名学生参加 3 项课外活动。其中有24 人参加了数学小组,20 人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍,又是 3 项活动都参加人数的7 倍,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的2 倍, 既参加数学小组又参加语文小组的有10 人。求参加文艺小组的人数。解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21 答:参加文艺小组的人数是21 人。1. 四年级三班订阅少年文摘的有19 人,订阅学与玩的有24 人,两种都订的有 13 人。问订阅少年文摘或学与玩的有多少人?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 13 页 2. 幼儿园有 58 人学钢琴, 43 人学画画, 37 人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人? 3. 1至 100的自然数中:(1)是 2 的倍数又是 3 的倍数的数有多少个?(2)是 2 的倍数或是 3 的倍数的数有多少个?(3)是 2 的倍数但不是 3 的倍数的数有多少个? 4. 某班数学、英语期中考试的成绩统计如下:英语得 100 分的有 12 人,数学得 100 分的有 10 人,两门功课都得 100 分的有 3 人,两门功课都未得100 分的有 26 人。这个班共有学生多少人? 5. 全班 50 人,会骑车的有 32 人,会滑旱冰的有21 人,两样都会的有8 人,求两样都不会的有多少人? 6. 一个班有学生 42 人,参加体育队的有 30 人,参加文艺队的有 25 人,并且每人至少参加一个队。这个班两队都参加的有多少人?【试题答案】 1. 四年级三班订阅少年文摘的有19 人,订阅学与玩的有24 人,两种都订的有 13 人。问订阅少年文摘或学与玩的有多少人? 19 + 2413 = 30 (人)答:订阅少年文摘或学与玩的有30 人。 2. 幼儿园有 58 人学钢琴, 43 人学画画, 37 人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?只学钢琴人数: 5837 = 21 (人)只学画画人数: 4337 = 6 (人) 3. 1至 100的自然数中:(1)是 2 的倍数又是 3 的倍数的数有多少个?既是 3 的倍数又是 2 的倍数,一定是 6 的倍数1006 = 16 4所以,既是 2 的倍数又是 3 的倍数有 16 个(2)是 2 的倍数或是 3 的倍数的数有多少个?1002 = 50 ,1003 = 33 1 50 + 3316 = 67 (个)所以,是 2 的倍数或是 3 的倍数的数有 67 个。(3)是 2 的倍数但不是 3 的倍数的数有多少个? 5016 = 34 (个)答:是 2 的倍数但不是 3 的倍数的数有 34 个。 4. 某班数学、英语期中考试的成绩统计如下:英语得 100 分的有 12 人,数学得 100 分的有 10 人,两门功课都得 100 分的有 3 人,两门功课都未得100 分的有 26 人。这个班共有学生多少人? 12 + 103 + 26 = 45(人)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 13 页答:这个班共有学生45 人。 5. 全班 50 人,会骑车的有 32 人,会滑旱冰的有21 人,两样都会的有8 人,求两样都不会的有多少人? 50(30 + 21 8)= 7(人)答:两样都不会的有7 人。 6. 一个班有学生 42 人,参加体育队的有 30 人,参加文艺队的有 25 人,并且每人至少参加一个队。这个班两队都参加的有多少人? 30 + 2542 = 13 (人)答:这个班两队都参加的有13 人。某班同学参加升学考试,得满分的人数如下:数学20 人,语文 20 人,英语 20人,数学、英语两科满分者8 人,数学、语文两科满分者7 人,语文、英语两科满分者 9 人,三科都没得满分者3 人. 问这个班最多多少人?最少多少人?分析与解如图 6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有 y 人,用长方形表示 .A、B、C分别表示数学、语文、英语得满分的人,由已知有 AC=8 ,AB=7 ,BC=9.ABC=X.由容斥原理有 Y=A Bc- AB -AC- BC+A BC 3 即 y=2020+20-7-8-9 x+3=39x。以下我们考察如何求y 的最大值与最小值。由 y=39+x 可知,当 x 取最大值时, y 也取最大值;当 x 取最小值时, y 也取最小值 x 是数学、语文、英语三科都得满分的人数, 因而他们中的人数一定不超过两科得满分的人数,即x7,x8且 x9,由此我们得到x7. 另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x0,故 0 x7。当 x 取最大值 7 时,y 有最大值 397=46,当 x 取最小值 0 时,y 有最小值 390=39。答:这个班最多有 46 人,最少有 39 人。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 13 页

    注意事项

    本文(2022年小学五年级-奥数题 .pdf)为本站会员(C****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开