欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    求导公式练习及导数与切线方程.pdf

    • 资源ID:32190077       资源大小:538.32KB        全文页数:6页
    • 资源格式: PDF        下载积分:12金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要12金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    求导公式练习及导数与切线方程.pdf

    1 考点分析: 以解答题的形式考查函数的单调性和极值;近几年高考对导数的考查每年都有,选择题、填空题、解答题都出现过,且最近两年有加强的趋势。知识点一:常见基本函数的导数公式(1)(C 为常数),(2)(n 为有理数),(3),(4),(5),(6),(7),(8),知识点二:函数四则运算求导法则设,均可导(1)和差的导数:(2)积的导数:(3)商的导数:()知识点三:复合函数的求导法则1.一般地,复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即或题型一:函数求导练习例一:函数y=exsinx 的导数等于例二:函数y=(x2+1)ex的导数为2 例三:函数f(x) =cos(2 3x)的导数等于_变式练习:1求函数y=的导数2求函数y=(1+cos2x)2的导数3求 y=e2xcos3x 的导数题型二:用导数求切线方程的四种类型求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P xy,及斜率,其求法为:设00()P xy,是曲线( )yf x 上的一点,则以P的切点的切线方程为:000()()yyfxxx若曲线( )yf x 在点00()P xf x,的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为0 xx 下面例析四种常见的类型及解法类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数( )fx ,并代入点斜式方程即可例 1曲线3231yxx在点 (11),处的切线方程为()3 34yx32yx43yx45yx解 : 由2()36fxxx则 在 点 (11),处 斜 率(1)3kf, 故 所 求 的 切 线 方 程 为( 1)3(1)yx,即32yx,因而选类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决例 2与直线 240 xy的平行的抛物线2yx 的切线方程是() 230 xy 230 xy 210 xy 210 xy解:设00()P xy,为切点,则切点的斜率为0022xxyx|01x由此得到切点(11), 故切线方程为12(1)yx,即 210 xy,故选评注: 此题所给的曲线是抛物线,故也可利用法加以解决, 即设切线方程为2yxb ,代入2yx ,得220 xxb,又因为0 ,得1b,故选类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法例 3 求过曲线32yxx 上的点 (11),的切线方程解:设想00()P xy,为切点,则切线的斜率为02032xxyx|切线方程为2000(32)()yyxxx320000(2)(32)()yxxxxx又知切线过点(11),把它代入上述方程,得3200001(2)(32)(1)xxxx解得01x,或012x故 所 求 切 线 方 程 为(12 )( 32 ) (1yx, 或13112842yx, 即20 xy,或 5410 xy评注: 可以发现直线5410 xy并不以 (11),为切点, 实际上是经过了点(11),且以1 72 8,为切点的直线这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解4 例 4求过点 (2 0), 且与曲线1yx相切的直线方程解:设00()P xy,为切点,则切线的斜率为0201xxyx|切线方程为00201()yyxxx,即020011()yxxxx又已知切线过点(2 0), ,把它代入上述方程,得020011(2)xxx解得000111xyx,即20 xy评注:点 (2 0), 实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性例 5已知函数33yxx ,过点(016)A,作曲线( )yf x 的切线,求此切线方程解:曲线方程为33yxx ,点(016)A ,不在曲线上设切点为00()M xy,则点M的坐标满足30003yxx 因200()3(1)fxx,故切线的方程为20003(1)()yyxxx点(0 16)A ,在切线上,则有32000016(3)3(1)(0)xxxx化简得308x,解得02x所以,切点为( 22)M,切线方程为9160 xy评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点练习:曲线32yxx在点( 1,1)处的切线方程为3、求直线的方程(1)求曲线1yx在切点 (1,1)的切线方程及在x=2 处的切线方程;(2)求过曲线lnyxx上一点(1,0)且与此点为切点的切线垂直的直线方程;5 (3)求以曲线sin xyx上一点( ,0)为切点的切线方程;4、( 1)求曲线xyex上的点到直线23yx的最短距离;(2)设函数1( )( ,)f xaxa bZxb,曲线( )yf x在点(2,(2)f处的切线方程为3y,求( )f x的解析式 . (3)求经过原点的曲线xyxe的切线方程。6

    注意事项

    本文(求导公式练习及导数与切线方程.pdf)为本站会员(33****7)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开