欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初中数学题库试题考试试卷 一次函数复习讲义.docx

    • 资源ID:32405047       资源大小:655.61KB        全文页数:29页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初中数学题库试题考试试卷 一次函数复习讲义.docx

    一次函数基本题型过关卷题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A(m,n)在第二象限,则点(|m|,-n)在第_象限;2、 若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为_;3、 已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_,b=_;若A,B关于y轴对称,则a=_,b=_;若若A,B关于原点对称,则a=_,b=_;4、 若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第_象限。题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示; 任意两点的距离为; 若ABx轴,则的距离为; 若ABy轴,则的距离为; 点到原点之间的距离为1、 点B(2,-2)到x轴的距离是_;到y轴的距离是_;2、 点C(0,-5)到x轴的距离是_;到y轴的距离是_;到原点的距离是_;3、 点D(a,b)到x轴的距离是_;到y轴的距离是_;到原点的距离是_;4、 已知点P(3,0),Q(-2,0),则PQ=_,已知点,则MQ=_; ,则EF两点之间的距离是_;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_;5、 两点(3,-4)、(5,a)间的距离是2,则a的值为_;6、 已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且ACB=90°,则C点坐标为_.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。A与B成正比例óA=kB(k0)1、当k_时,是一次函数;2、当m_时,是一次函数;3、当m_时,是一次函数;4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为_;题型四、函数图像及其性质方法:函数图象性质经过象限相同点与不同点y=kx+b(k、b为常数,且k0)k0b0b=0b0k0b0b=0b0一次函数y=kx+b(k0)中k、b的意义: k(称为斜率)表示直线y=kx+b(k0) 的倾斜程度;b(称为截距)表示直线y=kx+b(k0)与y轴交点的 ,也表示直线在y轴上的 。 同一平面内,不重合的两直线 y=k1x+b1(k10)与 y=k2x+b2(k20)的位置关系:当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y轴上同一点。 特殊直线方程: X轴 : 直线 Y轴 : 直线 与X轴平行的直线 与Y轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y5x+6,y的值随x值的减小而_。2、对于函数, y的值随x值的_而增大。 3、一次函数 y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。4、直线y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_象限。6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第_象限。7、已知一次函数    (1)当m取何值时,y随x的增大而减小?    (2)当m取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k0)的解析式。 已知是直线或一次函数可以设y=kx+b(k0); 若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b经过点(2,-6),求函数的解析式。2、直线y=kx+b的图像经过A(3,4)和点B(2,7),3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。5、若一次函数y=kx+b的自变量x的取值范围是-2x6,相应的函数值的范围是-11y9,求此函数的解析式。6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。7、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。8、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。题型六、平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。1. 直线y=5x-3向左平移2个单位得到直线 。2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=x向右平移2个单位得到直线 4. 直线y=向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线 7. 直线向上平移1个单位,再向右平移1个单位得到直线 。8. 直线向下平移2个单位,再向左平移1个单位得到直线_。9. 过点(2,-3)且平行于直线y=2x的直线是_ _。10. 过点(2,-3)且平行于直线y=-3x+1的直线是_.11把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是_;12直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=_;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。2、 已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1) 求两个函数的解析式;(2)求AOB的面积;3、 已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;(1) 分别写出两条直线解析式,并画草图;(2) 计算四边形ABCD的面积;(3) 若直线AB与DC交于点E,求BCE的面积。4、 如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,AOP的面积为6;(1) 求COP的面积;(2) 求点A的坐标及p的值;(3) 若BOP与DOP的面积相等,求直线BD的函数解析式。5、已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D    (1)求直线的解析式;    (2)若直线与交于点P,求的值。6. 如图,已知点A(2,4),B(-2,2),C(4,0),求ABC的面积。 巩固练习一、选择题: 1已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为( ) (A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3 2若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过( ) (A)一象限 (B)二象限 (C)三象限 (D)四象限 3直线y=-2x+4与两坐标轴围成的三角形的面积是( ) (A)4 (B)6 (C)8 (D)164若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为( )(A)y1>y2 (B)y1=y2 (C)y1<y2 (D)不能确定5设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是( ) 6若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第( )象限 (A)一 (B)二 (C)三 (D)四 7一次函数y=kx+2经过点(1,1),那么这个一次函数( ) (A)y随x的增大而增大 (B)y随x的增大而减小 (C)图像经过原点 (D)图像不经过第二象限 8无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 9要得到y=-x-4的图像,可把直线y=-x( ) (A)向左平移4个单位 (B)向右平移4个单位 (C)向上平移4个单位 (D)向下平移4个单位 10若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为( ) (A)m>- (B)m>5 (C)m=- (D)m=5 11若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是( ) (A)k< (B)<k<1 (C)k>1 (D)k>1或k< 12过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( ) (A)4条 (B)3条 (C)2条 (D)1条 13已知abc0,而且=p,那么直线y=px+p一定通过( ) (A)第一、二象限 (B)第二、三象限 (C)第三、四象限 (D)第一、四象限 14当-1x2时,函数y=ax+6满足y<10,则常数a的取值范围是( ) (A)-4<a<0 (B)0<a<2 (C)-4<a<2且a0 (D)-4<a<2 15在直角坐标系中,已知A(1,1),在x轴上确定点P,使AOP为等腰三角形,则符合条件的点P共有( ) (A)1个 (B)2个 (C)3个 (D)4个 16一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为( ) (A)0 (B)1 (C)2 (D)无数 17在直角坐标系中,横坐标都是整数的点称为整点,设k为整数当直线y=x-3与y=kx+k的交点为整点时,k的值可以取( ) (A)2个 (B)4个 (C)6个 (D)8个 18(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取( )(A)2个 (B)4个 (C)6个 (D)8个19甲、乙二人在如图所示的斜坡AB上作往返跑训练已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是a米/分,下山的速度是2b米/分如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)之间的函数关系的是( ) 20若k、b是一元二次方程x2+px-q=0的两个实根(kb0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过( ) (A)第1、2、4象限 (B)第1、2、3象限 (C)第2、3、4象限 (D)第1、3、4象限二、填空题 1已知一次函数y=-6x+1,当-3x1时,y的取值范围是_ 2已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是_ 3某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_ 4已知直线y=-2x+m不经过第三象限,则m的取值范围是_ 5函数y=-3x+2的图像上存在点P,使得P到x轴的距离等于3,则点P的坐标为_ 6过点P(8,2)且与直线y=x+1平行的一次函数解析式为_ 7y=x与y=-2x+3的图像的交点在第_象限 8某公司规定一个退休职工每年可获得一份退休金,金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(ba),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、q)表示_元 9若一次函数y=kx+b,当-3x1时,对应的y值为1y9,则一次函数的解析式为_ 10(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,2008),那么S1+S2+S2008=_11据有关资料统计,两个城市之间每天的电话通话次数T与这两个城市的人口数m、n(单位:万人)以及两个城市间的距离d(单位:km)有T=的关系(k为常数)现测得A、B、C三个城市的人口及它们之间的距离如图所示,且已知A、B两个城市间每天的电话通话次数为t,那么B、C两个城市间每天的电话次数为_次(用t表示)三、解答题1已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4)(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4y4范围内,求相应的y的值在什么范围内 2已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1 (1)写出y与x之间的函数关系式;(2)如果x的取值范围是1x4,求y的取值范围3为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x(cm) 37.0 40.0 42.0 45.0桌高y(cm) 70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由4小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?5已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,AOB的面积为6平方单位,求正比例函数和一次函数的解析式6如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长7由方程x-1+y-1=1确定的曲线围成的图形是什么图形,其面积是多少?8在直角坐标系x0y中,一次函数y=x+的图象与x轴,y轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且BCD=ABD,求图象经过B、D两点的一次函数的解析式9已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标10已知直线y=x+4与x轴、y轴的交点分别为A、B又P、Q两点的坐标分别为P(0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,Q与直线AB相切?11(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地 1800元/台 1600元/台B地 1600元/台 1200元/台 (1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出12已知写文章、出版图书所获得稿费的纳税计算方法是其中表示稿费为元应缴纳的税额。假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,问张三的这笔稿费是多少元? 13某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元 (1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值 14某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:用水量(m3)交水费(元)一月份 9 9二月份 15 19三月 22 33根据上表的表格中的数据,求a、b、c 15A市、B市和C市有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元 (1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值一次函数提高练习1、已知是整数,且一次函数的图象不过第二象限,则为 .2、若直线和直线的交点坐标为,则 .3、在同一直角坐标系内,直线与直线都经过点 .4、当满足 时,一次函数的图象与轴交于负半轴.5、函数,如果,那么的取值范围是 .6、一个长,宽的矩形场地要扩建成一个正方形场地,设长增加,宽增加,则与的函数关系是 .自变量的取值范围是 .且是的 函数.7、如图是函数的一部分图像,(1)自变量的取值范围是 ;(2)当取 时,的最小值为 ;(3)在(1)中的取值范围内,随的增大而 .8、已知函数y=(k-1)x+k2-1,当k_时,它是一次函数,当k=_时,它是正比例函数9、已知一次函数的图象经过点,且它与轴的交点和直线与轴的交点关于轴对称,那么这个一次函数的解析式为 .10、一次函数的图象过点和两点,且,则 ,的取值范围是 .11、一次函数的图象如图,则与的大小关系是 ,当 时,是正比例函数.12、为 时,直线与直线的交点在轴上.13、已知直线与直线的交点在第三象限内,则的取值范围是 .14、要使y=(m-2)xn-1+n是关于x的一次函数,n,m应满足 , .选择题1、图3中,表示一次函数与正比例函数、是常数,且的图象的是( )2、直线经过一、二、四象限,则直线的图象只能是图4中的( )3、若直线与的交点在轴上,那么等于( ) 4、直线如图5,则下列条件正确的是( ) 5、直线经过点,则必有( )A. 6、如果,则直线不通过( )A第一象限 B第二象限C第三象限 D第四象限7、已知关于的一次函数在上的函数值总是正数,则的取值范围是( )A B C D都不对8、如图6,两直线和在同一坐标系内图象的位置可能是( ) 图69、已知一次函数与的图像都经过,且与轴分别交于点B,则的面积为( )A4 B5 C6 D710、已知直线与轴的交点在轴的正半轴,下列结论: ;,其中正确的个数是( )A1个 B2个 C3个 D4个11、已知,那么的图象一定不经过( )A第一象限 B第二象限 C第三象限 D第四象限12、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发小时,距A站千米,则与之间的关系可用图象表示为( )解答题1、已知一次函数求: (1)为何值时,随的增大而减小; (2)分别为何值时,函数的图象与轴的交点在轴的下方?(3)分别为何值时,函数的图象经过原点?(4)当时,设此一次函数与轴交于A,与轴交于B,试求面积。2、(05年中山)某自来水公司为鼓励居民节约用水,采取按月用水量收费办法,若某户居民应交水费(元)与用水量(吨)的函数关系如图所示。0yx15202739.5(1)写出与的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?821.923、果农黄大伯进城卖菠萝,他先按某一价格卖出了一部分菠萝后,把剩下的菠萝全部降价卖完,卖出的菠萝的吨数和他收入的钱数(万元)的关系如图所示,结合图象回答下列问题:(1)降价前每千克菠萝的价格是多少元?(2)若降价后每千克菠萝的价格是1.6元,他这次卖菠萝的总收入是2万元,问他一共卖了多少吨菠萝?4、为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(30天)的通话时间(min)与通话费y(元)的关系如图所示:(1)分别求出通话费(便民卡)、 (如意卡)与通话时间之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜?5、气温随着高度的增加而下降,下降的规律是从地面到高空11km处,每升高1 km,气温下降6高于11km时,气温几乎不再变化,设地面的气温为38,高空中xkm的气温为y(1)当0x11时,求y与x之间的关系式?(2)求当x=2、5、8、11时,y的值。(3)求在离地面13 km的高空处、气温是多少度?(4)当气温是一16时,问在离地面多高的地方?6、小明用的练习本可在甲、乙两个商店内买到,已知两个商店的标价都是每个练习本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖;乙商店的优惠条件是:从第1本开始就按标价的85%卖 (1)小明要买20个练习本,到哪个商店购买较省钱? (2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的关系式。(3)小明现有24元钱,最多可买多少个本子?7、如图8,在直标系内,一次函数的图象分别与轴、轴和直线相交于、三点,直线与轴交于点D,四边形OBCD(O是坐标原点)的面积是10,若点A的横坐标是,求这个一次函数解析式.8、一次函数,当时,函数图象有何特征?请通过不同的取值得出结论?9、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.(2)在同一坐标系中,画出这三个函数的图象.10、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.(1)设用电度时,应交电费元,当100和100时,分别写出关于的函数关系式.(2)小王家第一季度交纳电费情况如下:月份一月份二月份三月份合计交费金额76元63元45元6角184元6角问小王家第一季度共用电多少度?11、某地上年度电价为0.8元,年用电量为1亿度.本年度计划将电价调至0.550.75元之间,经测算,若电价调至元,则本年度新增用电量(亿度)与(0.4)(元)成反比例,又当=0.65时,=0.8.(1)求与之间的函数关系式;(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?收益=用电量×(实际电价成本价)12、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离与B站开出时间的关系;(2)如果汽车再行驶30分,离A站多少千米?13、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥吨,求总运费(元)关于(吨)的函数关系式,画出它的图象(草图).(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?一次函数动点问题1如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标2 如图,以等边OAB的边OB所在直线为x轴,点O为坐标原点,使点A在第一象限建立平面直角坐标系,其中OAB边长为6个单位,点P从O点出发沿折线OAB向B点以3单位/秒的速度向B点运动,点Q从O点出发以2单位/秒的速度沿折线OBA向A点运动,两点同时出发,运动时间为t(单位:秒),当两点相遇时运动停止.xyOABxyOABxyOAB 点A坐标为_,P、Q两点相遇时交点的坐标为_; 当t=2时,_;当t=3时,_; 设OPQ的面积为S,试求S关于t的函数关系式; 当OPQ的面积最大时,试求在y轴上能否找一点M,使得以M、P、Q为顶点的三角形是Rt,若能找到请求出M点的坐标,若不能找到请简单说明理由。3 如图,在RtAOB中,AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点它们同时分别从点A、O向B点匀速运动,速度均为1cm/秒,设P、Q移动时间为t(0t4)(1)过点P做PMOA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示)(2)求OPQ面积S(cm2),与运动时间t(秒)之间的函数关系式,当t为何值时,S有最大值?最大是多少?(3)当t为何值时,OPQ为直角三角形?(4)证明无论t为何值时,OPQ都不可能为正三角形。若点P运动速度不变改变Q 的运动速度,使OPQ为正三角形,求Q点运动的速度和此时t的值。 4己知,如图在直角坐标系中,矩形OABC的对角线AC所在直线的解析式为。第33题图(1)求线段AC的长和的度数。(2)动点P从点C开始在线段CO上以每秒个单位长度的速度向点O移动,动点Q从点O开始在线段OA上以每秒个单位长度的速度向点A移动,(P、Q两点同时开始移动)设P、Q移动的时间为t秒。设的面积为S,求S与t之间的函数关系式,并求出当t为何值时,S有最小值。是否存在这样的时刻t,使得与相似,并说明理由?(3)在坐标平面内存在这样的点M,使得为等腰三角形且底角为30°,写出所有符合要求的点M的坐标。(直接写出结果,每漏写或写错一点坐标扣一分,直到扣完为止。) 5如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒(1) 求直线AB的解析式;(2) 当t为何值时,APQ与AOB相似? (3) 当t为何值时,APQ的面积为个平

    注意事项

    本文(初中数学题库试题考试试卷 一次函数复习讲义.docx)为本站会员(蓝****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开