初中数学题库试题考试试卷 初中数学竞赛讲座之三--求代数式的值.doc
-
资源ID:32413164
资源大小:180KB
全文页数:9页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
初中数学题库试题考试试卷 初中数学竞赛讲座之三--求代数式的值.doc
第三讲 求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值下面结合例题初步看一看代数式求值的常用技巧 例1 求下列代数式的值:分析 上面两题均可直接代入求值,但会很麻烦,容易出错我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?3x2y-(xyz-5x2z) =3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z) =(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z) =2xyz-2x2z =2×(-1)×2×(-3)-2×(-1)2×(-3) =12+6=18说明 本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值去、添括号时,一定要注意各项符号的变化例2 已知a-b=-1,求a3+3ab-b3的值分析 由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值下面给出本题的五种解法解法1 由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3 =b3-3b2+3b-1+3b2-3b-b3 =-1说明 这是用代入消元法消去a化简求值的解法2 因为a-b=-1,所以 原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1说明 这种解法是利用了乘法公式,将原式化简求值的解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3 =a3-3a2b+3ab2-b3=(a-b)3 =(-1)3=-1说明 这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1说明 这种解法是由a-b=-1,演绎推理出所求代数式的值解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1说明 这种解法是添项,凑出(a-b)3,然后化简求值通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3 ;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)解 由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简所以解 因为a=3b,所以c=5a=5×(3b)=15b将a,c代入所求代数式,化简得解 因为(x-5)2,m都是非负数,所以由(1)有由(2)得y+1=3,所以y=2下面先化简所求代数式,然后再代入求值=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6 如果4a-3b=7,并且3a+2b=19,求14a-2b的值分析 此题可以用方程组求出a,b的值,再分别代入14a-2b求值下面介绍一种不必求出a,b的值的解法解 14a-2b=2(7a-b) =2(4a+3a)+(-3b+2b)=2(4a-3b)+(3a+2b)=2(7+19)=52x+x-1+x-2+x-3+x-4+x-5的值 分析 所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5) =-1-2+3+4+5=9说明 实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关例8 若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利x=3k,y=4k,z=7k因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8例9 已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值 分析 本题是可直接代入求值的下面采用换元法,先将式子改写得较简洁,然后再求值解 设x+y=m,xy=n原式=(n-1)2+(m-2)(m-2n) =(n-1)2+m2-2m-2mn+4n =n2-2n+1+4n-2m-2mn+m2 =(n+1)2-2m(n+1)+m2 =(n+1-m)2 =(11×11+1-22)2 =(121+1-22)2 =1002=10000说明 换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式练习三1求下列代数式的值: (1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值 3已知a=3.5,b=-0.8,求代数式6-5b-3a-2b-8b-1的值 4已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值5已知