初中数学题库试题考试试卷 全等三角形练习2.doc
全等三角形练习21.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ以下结论恒成立的有_(把你认为正确的序号都填上) AD=BE; PQAE; AP=BQ; DE=DP; AOB=60° CP=CQ CPQ为等边三角形ABCEDOPQ共有2对全等三角形 CO平分AOP CO平分BCD 2.如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与CBM的平分线BF相交于点F. 如图141,当点E在AB边的中点位置时: 通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ; 连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ; 请证明你的上述两猜想. 如图142,当点E在AB边上的任意位置时,请你在AD边上找到一点N, 使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明3.已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证AECFBD图1图3ADFECBADBCE图2F当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、又有怎样的数量关系?请写出你的猜想,不需证明4.等边ABC,D为ABC外一点,BDC=120°,BD=DCMDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系当点M、N在边AB、AC上,且DMDN时,猜想中的结论还成立吗?若成立,请证明当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系5.如图1,BD是等腰的角平分线,.(1)求证BC=AB+AD;(2)如图2,于F,交延长线于E,求证:BD=2CE;ABCDFE图26、如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60°,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;OPAMNEBCDFACEFBD图图图(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。7.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平分线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由ADFCGEB图1ADFCGEB图2ADFCGEB图38、ABC中,BAC=60°,C=40°,AP平分BAC交BC于P,BQ平分ABC交AC于Q,求证:AB+BP=BQ+AQ。9、问题背景,如下命题: 如图1,在正三角形ABC中,N为BC边上任一点,CM为正三角形外角ACK的平分线,若ANM=60°,则AN=NM 如图2,在正方形ABCD中,N为BC边上任一点,CM为正方形外角DCK的平分线,若ANM=90°,则AN=NM 如图3,在正五边形ABCDE中,N为BC边上任一点,CM为正五边形外角DCK的平分线,若ANM=108°,则AN=NM任务要求: 请你证明以上三个命题; 请你继续完成下面的探索: 如图4,在正(3)边形ABCDEF中,N为BC边上任一点,CM为正边形外角DCK的平分线,问当ANM等于多少度时,结论AN=NM成立(不要求证明). 如图5,在梯形ABCD中,ADBC,AB=BC=CD,N为BC延长线上一点,CM为DCN的平分线,若ANM=ABC,请问AN=NM是否还成立?若成立,请给予证明;若不成立,请说明理由.10、如图,在ABC中,A=90°,D是AC上的一点,BD=DC,P是BC上的任一点,PEBD,PFAC,E、F为垂足求证:PE+PF=AB11、(2012内江)已知ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使DAF=60°,连接CF(1)如图1,当点D在边BC上时,求证:BD=CF;AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系12、如图14-1,在ABC中,BC边在直线l上,ACBC,且AC = BCEFP的边FP也在直线l上,边EF与边AC重合,且EF=FP(1)在图14-1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由13、(2006年辽宁沈阳25题).如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:AF=DE;AFDE.(不需要证明)(1)如图2,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF.则上面的结论、是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图3,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论、是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.14、已知BE,CF是ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系15、 在RtABC中,ACBC,ACB90°,D是AC的中点,DGAC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FHFC,交直线AB于点H求证:DG=DC判断FH与FC的数量关系并加以证明(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(本小题直接写出结论,不必证明)