基于51单片机的电子秤设计.doc
毕业设计论文2021届 题 目:基于51单片机的电子秤设计 专业名称:应用电子技术 姓 名:谢玉夏 学 号:1210401038 班 级:2021级应用电子技术 指导教师:刘志芳2021年 12 月 30 日摘要称重技术是人类生活中不可缺少的局部,自古以来就被人们所重视。作为一种计量手段,被广泛应用于工业、农业、贸易等各个领域。随着现代文明和科学技术的不断进步,人们对称重技术的准确度要求也越来越高,电子秤产品技术水平的上下,直接影响各行各业的现代化水平和社会经济效益的提高。近年来,电子称重技术取得了突飞猛进的开展,电子秤在称重计量领域中也占有越来越重要的地位,其应用领域也在不断地扩大。尤其是商用电子秤,由于其具有准确度高、反响灵敏、结构简单等优点,被广泛应用于工商贸易、轻工食品、医药卫生等领域。目前,机械秤正在逐步被电子秤取代,这就促使电子秤的研究需要进一步的深入。本设计是以AT89S51为核心的一种高精度电子秤,系统采用模块化设计法,其硬件结构主要包括:数据采集模块、最小系统模块、电源模块、键盘和显示模块。其中,数据采集模块包括称重传感器和A/D转换电路;最小系统局部主要包括AT89S51和扩展的外部数据存储器;键盘由4×4位矩阵键盘组成;显示局部LM4229液晶显示。软件局部由C语言编程,实现对各局部的控制。该电子秤可以能够显示商品的名称、价格、总量、总价等;能够自动完成商品的价格计算;能够储存几种简单商品的价格;能够具有超重提醒功能。其称重范围为05Kg,分度值为0.001g。整个系统结构简单,使用方便。关键词:电子秤;AT89S51单片机;称重传感器;A/D转换电路;液晶显示仅供学习参考目录1绪论11.1选题的背景与意义11.1.1选题的背景11.1.2选题的意义21.2电子秤的研究现状及开展趋势21.2.1电子秤的研究现状21.2.2电子秤的开展趋势31.3本文的结构42系统总体方案设计62.1电子秤的根本知识介绍62.1.1电子秤的根本结构62.1.2电子秤的工作原理72.1.3电子秤的计量参数72.2总体方案设计82.3系统各局部设计方案论证92.3.1电子秤分度数的设定92.3.2称重传感器的选定102.3.3A/D转换器的选定162.3.4单片机型号的选定183硬件设计203.1系统硬件结构图203.2单片机主控单元的设计203.2.1单片机引脚说明203.2.2AT89S51最小系统设计223.3数据采集模块设计243.3.1传感器单元设计243.3.2A/D转换单元设计253.4键盘和显示电路单元设计273.4.1键盘电路设计273.4.2显示电路设计273.5系统总体原理图283.6硬件抗干扰设计284系统软件设计314.1主程序设计314.2LM4229液晶显示驱动程序324.3ADC0832采样程序334.4键盘程序335系统仿真355.1欢送界面的仿真355.2无重物情况仿真365.3称量物体仿真375.4最大量程仿真385.5仿真总结与问题补充395.5.1仿真总结395.5.2问题补充396总结与展望41附录程序42参考文献521 绪论1.1 选题的背景与意义1.1.1 选题的背景1电子技术渗入衡器制造业随着第二次世界大战后的经济繁荣,为了把称重技术引入生产工艺过程中去,对称重技术提出了新的要求,希望称重过程自动化,为此电子技术不断渗入衡器制造业。在1954年使用了带新式打印机的倾斜杠杆式秤,其输出信号能控制商用结算器,并且用电磁铁机构与代替人工操作的按键与办公机器联用。在1960年开发出了与衡器相联的专门称重值打印机。当时的带电子装置的衡器其称量工作是机械式的,但与称量有关的显示、记录、远传式控制器等功能是电子方式的。2电子秤步入社会电子秤的开展过程与其它事物一样,也经历了由简单到复杂、由粗糙到精密、由机械到机电结合再到全电子化、由单一功能到多功能的过程。特别是近30年以来,工艺流程中的现场称重、配料定量称重、以及产品质量的监测等工作,都离不开能输出电信号的电子衡器。这是由于电子衡器不仅能给出质量或重量信号,而且也能作为总系统中的一个单元承当着控制和检验功能,从而推进工业生产和贸易交往的自动化和合理化。近年来,电子秤已愈来愈多地参与到数据处理和过程控制中。现代称重技术和数据系统已经成为工艺技术、储运技术、预包装技术、收货业务及商业销售领域中不可缺少的组成局部。随着称重传感器各项性能的不断突破,为电子秤的开展奠定了根底,国外如美国、西欧等一些国家在20世纪60年代就出现了0.1%称量准确度的电子秤,并在70年代中期约对75 %的机械秤进行了机电结合式的电子化改造。我国的衡器在20世纪40年代以前还全是机械式的,40年代开始开展了机电结合式的衡器。50年代开始出现了以称重传感器为主的电子衡器。80年代以来, 我国通过自行研制、引进消化吸收和技术改造,已由传统的机械式衡器步入集传感器、微电子技术、计算机技术于一体的电子衡器开展阶段。目前,由于电子衡器具有称量快、读数方便、能在恶劣环境下工作、便于与计算机技术相结合而实现称重技术和过程控制的自动化等特点,已被广泛应用于工矿企业、能源交通、商业贸易和科学技术等各个部门。随着称重传感器技术以及超大规模集成电路和微处理器的进一步开展,电子称重技术及其应用范围将更进一步的开展,并被人们越来越重视。1.1.2 选题的意义电子秤是日常生活中常用的电子衡器,广泛应用于超市、大中型商场、物流配送中心。电子秤在结构和原理上取代了以杠杆平衡为原理的传统机械式称量工具。相比传统的机械式称量工具,电子秤具有称量精度高、装机体积小、应用范围广、易于操作使用等优点,在外形布局、工作原理、结构和材料上都是全新的计量衡器。目前市场上使用的称量工具,或者是结构复杂,或者运行不可靠,且本钱高,精度稳定性不好,调整时间长,易损坏,维修困难,装机容量大,能源消耗大,生产本钱高。而且目前市场上电子秤产品的整体水平不高,局部小型企业产品质量差且技术力量薄弱,设备不全,缺乏产品的开发能力,产品质量在低水平徘徊。因此,有针对性地开发出一套有实用价值的电子秤系统,从技术上克服上述诸多缺点,改善电子秤系统在应用中的缺乏之处,具有现实意义。1.2 电子秤的研究现状及开展趋势1.2.1 电子秤的研究现状近几年,我国的电子称重系统从最初的机电结合型开展到现在的全电子型和数字智能型。电子称重技术逐渐从静态称重向动态称重开展,从模拟测量向数字测量开展,从单参数测量向多参数测量开展。电子称重系统制造技术及其应用得到了新开展。国内电子称重技术根本到达国际上20世纪90年代中期的水平,少数产品的技术已处于国际领先水平。在研究方法上,电子称重系统的工作原理一般是将作用在承载器上的质量或力的大小,通过压力传感器转换为电信号,并通过控制电路来处理该电信号。其中压力传感器大多数采用电阻应变片压力传感器,由于应变片的体积较小,市场上有多种规格可供选择,而且可以针对弹性敏感元件的形式可以灵活设计来适应各种应用场合的要求,所以应变片式压力传感器得到广泛的应用。但是电阻应变片压力传感器的一个严重缺陷是应变灵敏度、应变片本身的电阻都随温度变化,而且灵敏度随温度变化较大。在不同的环境中,应变片的阻值发生变化,输出零点漂移明显。并且应变片的输出信号很小、线性范围窄,而且动态响应较差,有待进一步开发。在国际上,一些兴旺国家在电子称重方面,从技术水平、品种和规模等方面都到达了较高的水平。特别是在准确度和可靠性等方面有了很大的提高。其中梅特勒托利多公司生产的BBK4系列高精度电子秤精度到达了lmg,速度大约为1次秒。目前,电子秤在称量速度方面需要进一步的研究。在称重传感器方面,国外产品的品种和结构又有创新,技术功能和应用范围不断扩大。1.2.2 电子秤的开展趋势电子秤的称重功能是基于微处理器这一核心技术来实现的。由于目前在设计电子称重系统时大量地采用集成芯片,因此电子称重系统已经摆脱了以往的电子模式,正向小型化、模块化、智能化、集成化开展;其技术性能趋向于高速率、高准确度、高稳定性、高可靠性;其应用性趋向于综合性、组合性。小型化:体积小、高度低、重量轻,即小薄轻。为使电子衡器的承载器到达小、薄、轻,开始采用重量轻且刚度大的空心波纹铜板和方形闭合截面的薄壁型材。模块化:电子衡器的承载器采用模块式一体组合或分体组合,产生新的品种和规格。这种模块化组合不但提高了产品的通用性和可靠性,而且也大大提高了生产效率,降低了本钱。智能化:与电子计算机组合或开发称重用计算机,利用计算机的智能来增加称重显示控制的功能,使其在原有功能的根底上增加推理、判断、自诊断、自适应、自组织等功能。集成化:对于某些品种和结构的电子衡器,可以实现承载器与称重传感器一体化或承载器、称重传感器与称重显示控制器一体化。综合性:电子称重技术和电子衡器产品的应用范围不断扩大,它已渗透到一些学科和工业自动控制领域。对某些商用电子计价秤而言,只具备称重、计价、显示、打印功能还远远不够,现代商业系统还要求它能提供各种销售信息,把称重与管理自动化紧密结合,使称重、计价、进库、销售管理一体化,实现管理自动化。这就要求电子计价秤能与电子计算机联网,把称重系统与计算机系统组成一个完整的综合控制系统。组合性:在工业生产过程或工艺流程中,不少称重系统还应具有可组合性,即:测量范围可以任意设定;硬件能够依据不定的程序进行修改和扩展;输入输出数据与指令可使用不同的语言,并能与外部的控制和数据处理设备进行通信。今后, 随着电子高科技的飞速开展, 电子秤技术的开展定将日新月异。同时, 功能更加齐全的高精度的先进电子秤将会不断问世, 其应用范围也会更加拓宽。1.3 本文的结构本设计是以AT89S51为核心的一种高精度电子秤,系统采用模块化设计法,其硬件结构主要包括:数据采集模块、最小系统模块、电源模块、键盘和显示模块。软件局部由C语言编程,实现对各局部的控制。可以实现称重、去皮、置零、计价和显示等功能。其称重范围为05Kg,分度值为0.001g。整个系统结构简单,使用方便。全文共分为五章,各章主要内容如下:第一章为绪论局部,简要介绍了选题的背景及意义、电子秤的研究现状及开展趋势以及本文的主要内容及结构;第二章为总体设计局部,简要介绍了电子秤的结构及工作原理,论证了系统总体方案的设计,以及对各种方案的选择做出了比拟;第三章为系统硬件设计局部,主要是通过对各种模块的介绍以及对电路功能的分析,对系统硬件进行了选型和设计,得出系统硬件结构图;第四章为系统软件设计局部,主要介绍了系统各局部软件的设计流程,给出了简单的程序;第五章为系统软件仿真;第六章为总结与展望,主要是对本课题的总结,以及对存在的问题进行归纳和进一步研究的方向。 482 系统总体方案设计2.1 电子秤的根本知识介绍2.1.1 电子秤的根本结构电子秤是利用物体的重力作用来确定物体质量重量的测量仪器,也可用来确定与质量相关的其它量大小、参数、或特性。不管根据什么原理制成的电子秤均由以下三局部组成:1承重、传力复位系统它是被称物体与转换元件之间的机械、传力复位系统,又称电子秤的秤体,一般包括接受被称物体载荷的承载器、秤桥结构、吊挂连接部件和限位减振机构等。2称重传感器即由非电量质量或重量转换成电量的转换元件,它是把支承力变换成电的或其它形式的适合于计量求值的信号所用的一种辅助手段。按照称重传感器的结构型式不同,可以分直接位移传感器电容式、电感式、电位计式、振弦式、空腔谐振器式等和应变传感器电阻应变式、声外表谐振式或是利用磁弹性、压电和压阻等物理效应的传感器。对称重传感器的根本要求是:输出电量与输入重量保持单值对应,并有良好的线性关系;有较高的灵敏度;对被称物体的状态的影响要小;能在较差的工作条件下工作;有较好的频响特性;稳定可靠。3测量显示和数据输出的载荷测量装置即处理称重传感器信号的电子线路包括放大器、模数转换、电流源或电压源、调节器、补偿元件、保护线路等和指示部件如显示、打印、数据传输和存贮器件等。这局部习惯上称载荷测量装置或二次仪表。在数字式的测量电路中,通常包括前置放大、滤滤、运算、变换、计数、存放、控制和驱动显示等环节。2.1.2 电子秤的工作原理当被称物体放置在秤体的秤台上时,其重量便通过秤体传递到称重传感器,传感器随之产生力电效应,将物体的重量转换成与被称物体重量成一定函数关系(一般成正比关系)的电信号(电压或电流等)。通常此电压信号很小,需要通过前端信号处理电路进行准确的线性放大,放大后的模拟电压信号经过滤波电路和A/D转换电路转换成数字信号被送入到主控电路的单片机中,单片机不断扫描键盘和各种功能开关,根据键盘输入内容和各种功能开关的状态进行必要的判断、分析、由仪表的软件来控制各种运算。运算结果送到内存贮器,需要显示时,单片机发出指令,从内存贮器中读出送到显示器显示。2.1.3 电子秤的计量参数电子秤的计量性能涉及的主要技术指标有:量程、平安载荷、额定载荷、允许误差、分度值、分度数、准确度等级等。1量程:一台电子秤不计皮重,所能称量的最大的载荷Max,即电子秤在正常工作情况下,所能称量的最大值。2平安载荷:为电子秤正常称量案范围的120%。3额定载荷:电子秤的正常称量范围。4允许误差:等级检定时允许的最大偏差。5分度值:电子秤的测量范围被分成假设干等份,每份值即为分度值。用e或d来表示。6分度数:衡器的测量范围被分成假设干等份,总份数即为分度数用n表示。电子衡器的最大称量Max可以用总分度数n与分度值d的乘积来表示,即Max=n*d。7准确度等级:国际法制计量组织把电子秤按照不同的分度数分成、四类等级,分别对应不同准确度的电子秤和分度数n的范围,如表因为本设计采用软件仿真而不能进行实际的称量,故信号的放大滤波电路局部舍去,直接输入模拟电压信号,放大滤波局部内容会在第五章仿真总结与问题补充中进行后续介绍。2-1所示。表2-1 电子秤等级分类标志及等级电子秤种类分度数范围特种准确度基准衡器n>100,000高准确度精密衡器10,000<n100,000中准确度商业衡器1,000<n10,000普通准确度粗衡器100<n1,0002.2 总体方案设计按照设计的根本要求,可以确定系统共分为五大模块,数据采集模块、最小系统模块、超重报警模块、键盘和显示模块。其中,数据采集模块包括称重传感器和A/D转换电路;最小系统模块由AT89S51单片机及其外围电路组成;键盘由4×4位矩阵键盘组成,可以控制显示商品种类和价钱等信息;显示局部采用LM4229液晶显示,显示当前商品的名称、单价、重量及总价等信息。软件局部由C语言编程,实现对各局部的控制。该电子秤可以实现显示商品的名称、单价、重量、总价等功能。其称重范围为05Kg,分度值为0.001g。在扩展功能上,本设计增加了一个超重报警提示。其总体设计的框图如图2-1所示:图2-1 总体设计方框图系统工作原理:把所称物体放到秤台上,物体的重力通过秤体传给称重传感器,传感器受到压力使电阻发生变化引起电压变化,再将电压值送到A/D转换电路,将模拟量转换成数字量,转换后的数字量送至单片机进行处理,并显示结果。单片机最小系统由AT89S51和外围的时钟电路及复位电路组成。显示电路设计采用LM4229液晶显示,对各局部的控制由采用C语言编程的软件来实现。2.3 系统各局部设计方案论证2.3.1 电子秤分度数的设定当前,一些单位为了提高级商贸秤的准确度,尝试改小电子秤的分度值,扩大电子秤的分度数,以便到达高精度称量的目的。这样做非但不能进行高精度称量,还会破坏电子秤原有的计量性能,降低电子秤的准确度,有损电子秤的可靠性,使电子秤出现更多的计量误差。现在我国已经完全与OIML规定接轨,衡器计量检定规程完全按OIML规定而来。表2-2为级商业秤误差要求。表2-2 级数字显示商用衡器允差表允差e检定分度值检定要求使用中要求m <500e±0.5e±1.0e500e< m2000e±1.0e±2.0e2000e< mMax±1.5e±3.0e由表2-2可知,它的整个称量范围允差规定是变化的,误差是从大到小再变大,最高准确度在中间。从0500分度数为低精度称量段,到高于3000个分度数之后的实际称量精度逐渐变低,实际误差不断加大。分度数再高其允差也是不变的。从国外电子秤的准确度和分度数设置、国内原先衡器的检定标准和现在我们统计的电子秤分度数的准确度以及OIML对级秤的允差规定看,说明现有级商业秤的分度数设置为20003000是比拟理想的,属于最正确分度数。这样设置决定了电子秤的准确度首检为±0.05%,使用中为±0.1%的正确性、合理性与必要性。2.3.2 称重传感器的选定称重传感器在电子秤中占有十分重要的位置,被喻为电子秤的心脏部件,它的性能好坏很大程度上决定了电子秤的精确度和稳定性。考虑到不同使用地点的重力加速度和空气浮力对转换的影响,称重传感器的性能指标主要有线性误差、滞后误差、重复性误差、蠕变、零点温度特性和灵敏度温度特性等。在各种衡器和质量计量系统中,通常用综合误差带来综合衡量传感器准确度,并将综合误差带与衡器误差带联系起来,以便选用对应于某一准确度衡器的称重传感器。国际法制计量组织(OIML)规定,传感器的误差带占衡器误差带的70,称重传感器的线性误差、滞后误差以及在规定温度范围内由于温度对灵敏度的影响所引起的误差等的总和不能超过误差带。假设在环境恶劣的条件下如上下温、湿热,传感器所占的误差比例就更大,因此,在人们设计电子秤时,正确地选用称重传感器非常重要。1常用各种称重传感器称重传感器按转换方法分为光电式、液压式、电磁力式、电容式、磁极变形式、振动式、陀螺仪式、电阻应变式等8类,以电阻应变式使用最广。光电式传感器包括光栅式和码盘式两种。光栅式传感器利用光栅形成的莫尔条纹把角位移转换成光电信号。光栅有两块,一为固定光栅,另一为装在表盘轴上的移动光栅。加在承重台上的被测物通过传力杠杆系统使表盘轴旋转,带动移动光栅转动,使莫尔条纹也随之移动。利用光电管、转换电路和显示仪表,即可计算出移过的莫尔条纹数量,测出光栅转动角的大小,从而确定和读出被测物质量。码盘式传感器的码盘是一块装在表盘轴上的透明玻璃,上面带有按一定编码方法编定的黑白相间的代码。加在承重台上的被测物通过传力杠杆使表盘轴旋转时,码盘也随之转过一定角度。光电池将透过码盘接受光信号并转换成电信号,然后由电路进行数字处理,最后在显示器上显示出代表被测质量的数字。光电式传感器曾主要用在机电结合秤上。液压式传感器:在受被测物重力P作用时,液压油的压力增大,增大的程度与P成正比。测出压力的增大值,即可确定被测物的质量。液压式传感器结构简单而牢固,测量范围大,但准确度一般不超过1/100。电磁力式传感器:它利用承重台上的负荷与电磁力相平衡的原理工作。当承重台上放有被测物时,杠杆的一端向上倾斜;光电件检测出倾斜度信号,经放大后流入线圈,产生电磁力,使杠杆恢复至平衡状态。对产生电磁平衡力的电流进行数字转换,即可确定被测物质量。电磁力式传感器准确度高,可达1/20001/60000,但称量范围仅在几十毫克至10千克之间。电容式传感器:工作原理是利用电容器振荡电路的振荡频率f与极板间距d成正比的关系。极板有两块,一块是固定不动的,另一块是可移动的。在秤体加载重物时,两极板间的距离发生变化,随之,电路的振荡频率也改变。只要测出频率的变化便可求出被测物的质量。电容式传感器耗电量少,造价低,准确度为1/2001/500。磁极变形式传感器:原理为铁磁元件在被测物体重力下发生形变,产生应力引起导磁率的变化,随之,绕在铁磁元件两侧的次级线圈的感应电压也变化。这样测出电压的变化量便可求出加到磁极上的力,从而确定物体的质量。磁极变形式传感器的准确度不高,一般为1/100,称量范围为几十至几万千克。振动式传感器弹性元件受力后,其固有振动频率与作用力的平方根成正比。测出固有频率的变化,即可求出被测物作用在弹性元件上的力,进而求出其质量。振动式传感器有振弦式和音叉式两种。振弦式传感器的弹性元件是弦丝。当承重台上加有被测物时,V形弦丝的交点被拉向下,且左弦的拉力增大,右弦的拉力减小。两根弦的固有频率发生不同的变化。求出两根弦的频率之差,即可求出被测物的质量。振弦式传感器的准确度较高,可达1/10001/10000,称量范围为100克至几百千克,但结构复杂,加工难度大,造价高。音叉式传感器的弹性元件是音叉。音叉端部固定有压电元件,它以音叉的固有频率振荡,并可测出振荡频率。当承重台上加有被测物时,音叉拉伸方向受力而固有频率增加,增加的程度与施加力的平方根成正比。测出固有频率的变化,即可求出重物施加于音叉上的力,进而求出重物质量。音叉式传感器耗电量小,计量准确度高达1/100001/200000,称量范围为500g10kg。陀螺仪式传感器,转子装在内框架中,以角速度绕X轴稳定旋转。内框架经轴承与外框架联接,并可绕水平轴Y倾斜转动。外框架经万向联轴节与机座联接,并可绕垂直轴Z旋转。转子轴(X轴)在未受外力作用时保持水平状态。转子轴的一端在受到外力(P/2)作用时,产生倾斜而绕垂直轴Z 转动进动。进动角速度与外力P/2成正比,通过检测频率的方法测出,即可求出外力大小,进而求出产生此外力的被测物的质量。陀螺仪式传感器响应时间快(5秒),无滞后现象,温度特性好3ppm,振动影响小,频率测量准确精度高,故可得到高的分辨率(1/100000)和高的计量准确度(1/300001/60000)。电阻应变式传感器利用电阻应变片变形时其电阻也随之改变的原理工作。主要由弹性元件、电阻应变片、测量电路和传输电缆4局部组成。电阻应变片贴在弹性元件上,弹性元件受力变形时,其上的应变片随之变形,并导致电阻改变。测量电路测出应变片电阻的变化并变换为与外力大小成比例的电信号输出。电信号经处理后以数字形式显示出被测物的质量。电阻应变式传感器的称量范围为300g至数千Kg,计量准确度达1/10001/10000,结构较简单,可靠性较好,大局部电子衡器均使用此传感器。2称重传感器的选择传感器种类繁多,分类方式也千差万别,它们都有各自的特点,但在设计电子秤时,选择一种适宜的传感器非常重要,传感器的性能在很大程度上决定了电子秤的精确度和稳定性。称重传感器的选择主要从以下几个方面考虑。1对传感器数量和量程的选择传感器数量的选择是根据电子秤的用途、秤体需要支撑的点数支撑点数应根据使秤体几何重心和实际重心重合的原那么而确定而定。一般来说,秤体有几个支撑点就选用几只传感器,但是对于一些特殊的秤体,如电子吊秤,就只能采用一个传感器,一些机电结合秤就应根据实际情况来确定选用传感器的个数。传感器的量程选择可依据秤的最大称量值、选用传感器的个数、秤体自重、可产生的最大偏载及动载因素综合评价来决定。一般来讲,传感器的量程越接近分配到每个传感器的载荷,其称量的准确度就越高。但是在实际的使用当中,由于加在传感器上的载荷除被称物体外,还存在秤体自重、皮重、偏载及振动冲击等载荷,因此选用传感器时,要考虑诸多方面的因素,保证传感器的平安和寿命。公式2-1给出了传感器量程选择的计算公式。2-1式中C单个传感器的额定量程;W秤体自重;Wmax一被称物体净重的最大值;N秤体所采用支撑点的数量;K0保险系数,一般取1.21.3之间;K1冲击系数;K2秤体的重心偏移系数;K3风压系数2传感器准确度等级的选择传感器的准确度等级概括了传感器的非线性、蠕变、蠕变恢复、滞后、重复性、灵敏度等技术指标。称重传感器已按准确度等级划分,且已考虑了0.7倍误差因子,非自动衡器称重传感器的准确度等级要选择与电子秤相对应的准确度等级。称重传感器按综合性能分为A、B、C、D四个准确度等级,分别对应于衡器、四个准确度等级。3各种类型传感器的使用范围称重传感器形式的选择主要取决于称重的类型和安装空间,保证安装适宜,称重平安可靠;另一方面要考虑厂家的建议。对于传感器制造厂家来讲,它一般规定了传感器的受力情况、性能指标、安装形式、结构形式、弹性体的材质等。譬如铝合金悬臂梁传感器适合于电子计价秤、平台秤、案秤等;钢式悬臂梁传感器适用于电子皮带秤、分选秤等;钢质桥式传感器适用于轨道衡、汽车衡等;柱式传感器适用于汽车衡、动态轨道衡、大吨位料斗秤等。4使用环境称重传感器实际上是一种将质量信号转换成可测量的电信号输出装置。用传感器首先要考虑传感器所处的实际工作环境,这点对于正确选用传感器至关重要,它关系到传感器能否正常工作以及它的平安和使用寿命,乃至整个衡器的可靠性和平安性。一般情况下,高温环境对传感器造成涂覆材料融化、焊点开化、弹性体内应力发生结构变化等问题;粉尘、潮湿对传感器造成短路的影响;在腐蚀性较高的环境下会造成传感器弹性体受损或产生短路现象;电磁场对传感器输出会产生干扰。相应的环境因素下我们必须选择对应的称重传感器才能满足必要的称重要求。3电阻应变式称重传感器按照称重传感器选择的指标要求,以及对各种传感器的比拟,本设计选定电阻应变片式传感器,下面对此类传感器做详细介绍。电阻应变式称重传感器是把电阻应变计粘贴在弹性敏感元件上,弹性体弹性元件,敏感梁在外力作用下产生弹性变形,使粘贴在他外表的电阻应变片转换元件也随同产生变形,电阻应变片变形后,它的阻值将发生变化增大或减小,再经相应的测量电路把这一电阻变化转换为电信号电压或电流,从而完成了将外力变换为电信号的过程。电阻应变式称重传感器包括两个主要局部,一个是弹性敏感元件:利用它将被测的重量转换为弹性体的应变值;另一个是电阻应变计:它作为传感元件将弹性体的应变,同步地转换为电阻值的变化。电阻应变片所感受的机械应变量一般为10-610-2,随之而产生的电阻变化率也大约在10-610-2数量级之间。这样小的电阻变化用一般测量电阻的仪表很难测出,必须采用一定形式的测量电路将微小的电阻变化率转变成电压或电流的变化,才能用二次仪表显示出来。在电阻应变式称重传感器中通过桥式电路将电阻的变化转换为电压变化。当传感器不受载荷时,弹性敏感元件不产生应变,粘贴在其上的应变片不发生变形,阻值不变,电桥平衡,输出电压为零;当传感器受力时,即弹性敏感元件受载荷P时,应变片就会发生变形,阻值发生变化,电桥失去平衡,有输出电压。图2-2为电阻应变式称重传感器桥式测量电路。图2-2 电阻应变式称重传感器桥式测量电路R1、R2、R3、R4为4个应变片电阻,组成了桥式测量电路,Rm为温度补偿电阻,e为鼓励电压,V为输出电压。假设不考虑Rm,在应变片电阻变化以前,电桥的输出电压为:2-2由于桥臂的起始电阻全等,即R1=R2=R3=R4=R,所以V=0。当应变片的电阻R1、R2、R3、R4变成R+R1、R+R2、R+R3、R+R4时,电桥的输出电压变为:2-3通过化简,上式那么变为:2-4也就是说,电桥输出电压的变化与各桥臂电阻变化率的代数和成正比。如果四个桥臂应变片的灵敏系数相同,且=K,那么上式又可写成:2-5式中K为应变片灵敏系数,为应变量。式2-5说明,电桥的输出电压和四个轿臂的应变片所感受的应变量的代数和成正比。在电阻应变式称重传感器中,4个应变片分别贴在弹性梁的4个敏感部位,传感器受力作用后发生变形。在力的作用下,R1、R3被拉伸,阻值增大,R1、R3正值,R2、R4被压缩,阻值减小,R2、R4为负值。再加之应变片阻值变化的绝对值相同,即2-62-7因此2-8假设考虑Rm,那么电桥的输出电压变成:2-9令,那么2-10Su称为传感器系数或传感器输出灵敏度。对于一个高精度的应变传感器来说,仅仅靠4个应变片组成桥式测量电路还是远远不够的。由于弹性梁材料金相组织的不均匀性及热处理工艺、应变片性能及粘贴工艺、温度变化等因素的影响,传感器势必产生一定的误差。为了减少传感器随温度变化产生的误差,提高其精度和稳定性,需要在桥路两端和桥臂中串入一些补偿元件。如:初始不平衡值的补偿、零载输出温度补偿、输出灵敏度温度补偿等。2.3.3 A/D转换器的选定在实际的测量和控制系统中检测到的常是时间、数值都连续变化的模拟量,模拟量要输入到单片机中进行处理,首先要经过模拟量到数字量的转换,单片机才能接收、处理。目前有多种类型的A/D转换器,其类型有积分型、逐次逼近型、并行比拟型、-调制型、压频变换型等。多种类型的ADC各有其优缺点,并能满足不同的具体要求。1A/D转换器的分类:1积分型积分型ADC工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比拟型已逐步成为主流。2逐次逼近型逐次逼近型ADC由一个比拟器和D/A转换器通过逐次比拟逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置D/A转换器输出进行比拟,经n次比拟而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率<12位时价格廉价,但高精度>12位时价格很高。3并行比拟型/串并行比拟型并行比拟型ADC采用多个比拟器,仅作一次比拟而实行转换,又称Flash(快速)型。由于转换速率极高,n位的转换需要2n-1个比拟器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。串并行比拟型AD结构上介于并行型和逐次比拟型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比拟实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级型ADC,而从转换时序角度又可称为流水线型ADC,现代的分级型AD中还参加了对屡次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比拟型高,电路规模比并行型小。4-调制型-型AD由积分器、比拟器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字局部根本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。5压频变换型压频变换型是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。2A/D转换器选用的原那么:1A/D转换器的位数。A/D转换器决定分辨率的上下,在系统中,A/D转换器的分辨率应比系统允许引用误差高一倍以上。2A/D转换器的转换速率。不同类型的A/D转换器的转换速率大不相同。积分型的转换速率低,转换时间从几豪秒到几十毫秒,只能构成低速A/D转换器,一般用于压力、温度及流量等缓慢变化的参数测试。逐次逼近型属于中速A/D转换器,转换时间为纳秒级,用于个通道过程控制和声频数字转换系统。3是否加采样/保持器。4A/D转换器的有关量程引脚。有的A/D转换器提供两个输入引脚,不同量程范围内的模拟量可从不同引脚输入。5A/D转换器的启动转换和转换结束。一般A/D转换器可由外部控制信号启动转换,这一启动信号可由CPU提供。转换结束后A/D转换器内部转换结束信号触发器置位,并输出转换结束标志电平,通知微处理器读取转换结果。6A/D转换器的晶闸管现象。其现象是在正常使用时,A/D转换器芯片电流骤增,时间一长就会烧坏芯片。2.3.4 单片机型号的选定1单片机选定准那么市场上的单片机型号很多,功能也有差异,在选择单片机型号的时候主要应该注意以下几个方面:1市场货源系统设计者只能在市场上能够提供的单片机中选择,特别是作为产品大批量生产的应用系统,所选的单片机型号必须有稳定、充足的货源。2单片机性能应根据系统的功能要求和各种单片机的性能,选择最容易实现系统技术指标的型号,而且能到达较高的性能价格比。单片机性能包括片内硬件资源、运行速度、可靠性、指令系统功能、体积和封装形式等方面。影响性能价格比的因素除单片机的性能价格外,还包括硬件和软件设计的容易程度、相应的工作量大小,以及开发工具的性能价格比。3研制周期在研制任务重、时间紧的情况下,还要考虑所选的单片机型号是否熟悉,是否能马上着手进行系统的设计。与研制周期有关的另一个重要因素是开发工具,性能优良的开发工具能加快系统地研制进程。2AT89S51单片机介绍根据以上对单片机选型知识的介绍,本设计选用AT89S51单片机,下面对此型号单片机进行简介。AT89S51是美国ATMEL公司生产的低电压、高性能CMOS 8位单片机。AT89S51是一种带4K字节闪烁可编程可擦除只读存储器的单片机,其指令集和传统的51单片机指令集是一样的。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89S51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器RAM,32个外部双向输入/输出I/O口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗WDT电路,片内时钟振荡器。 此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。3 硬件设计3.1 系统硬件结构图图3-1为系统总体硬件结构方框图,系统共分为三大局部:数据采集模块、单片机控制模块以及键盘和显示模块。各模块所采用的主要芯片型号已于图