2022版高考数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式练习苏教版.doc
4.2 同角三角函数的根本关系及诱导公式考点一同角三角函数的根本关系式的应用 1.(2022·苏州模拟)假设sin =-,且为第四象限角,那么tan =()A.B.- C.D.- 【解析】选D.因为sin =-,为第四象限角,所以cos =,所以tan =-.2.cos =k,kR,那么sin = ()A.-B.C.±D.【解析】选B.因为,所以cos <0,sin >0,所以sin =.【巧思妙解】(排除法)选B.因为,所以sin >0,排除A,C,又-1<k<0,所以>1,故排除D.假设将题中的“cos =k,kR,换为“sin =k,kR,如何求cos 呢?【解析】因为,所以cos <0,由平方关系知cos =-=-.3.假设=3,那么cos -2sin =()A.-1B.1C.-D.-1或-【解析】选C.由得3sin =1+cos >0,cos =3sin -1,cos2=1-sin2=(3sin -1)2,sin =,所以cos -2sin =3sin -1-2sin =sin -1=-.4.tan =,那么:(1)=_. (2)sin2+sin cos +2=_. 【解析】(1)=-.(2)sin2+sin cos +2=3sin2+sin cos +2cos2=.答案:(1)-(2)同角三角函数关系式的应用方法(1)利用sin2+cos2=1可实现的正弦、余弦的互化,利用=tan 可以实现角的弦切互化.(2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.(3)分式中分子与分母是关于sin ,cos 的齐次式,往往转化为关于tan 的式子求解. 【秒杀绝招】1.勾股数解T1,看到sin =-,想到勾股数5,12,13,所以cos =±,tan =±,因为为第四象限角,所以tan <0,tan =-.2.转化代入法解T4,(1)将tan =转化为cos =2sin ,将cos =2sin 代入得=-.(2)同理可得.考点二诱导公式的应用 【典例】1.假设f(x)=sin+1,且f(2 020)=2,那么f(2 021)=_. 2.cos=a,那么cos+sin=_. 【解题导思】序号联想解题1看到形如2 020的数字,想到函数有周期性.三角函数可运用诱导公式求解2看到三角函数给值求值问题.想到找出角与未知角的关系,+=,-=-【解析】1.因为f(2 020)=sin+1=sin(1 010+)+1=sin +1=2,所以sin =1,cos =0.所以f(2 021)=sin+1 =sin+1=cos +1=1.答案:12.cos=cos=-cos=-a,sin=sin=cos=a,所以cos+sin=-a+a=0.答案:01.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.2.利用诱导公式化简三角函数的要求(1)化简过程是恒等变形.(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.1.(2022·淮南十校联考)sin=,那么cos的值是()A.- B.C.D.-【解析】选A.因为sin=,所以cos= cos=-sin=-.2.sin的值为_. 【解析】sin=-sin=-sin=-sin=-sin=-sin=-.答案:-考点三同角关系与诱导公式的综合应用 命题精解读考什么:(1)同角关系整体代换,sin ±cos 与sin ·cos 之间的关系,同角关系与诱导公式综合应用等.(2)考查逻辑推理,数学运算等核心素养,以及转化与化归的思想.怎么考:诱导公式与同角关系结合考查求三角函数值,代数式的值等.新趋势:以考查同角关系与诱导公式综合应用为主.学霸好方法同角三角函数根本关系式的应用技巧1.切弦互化:主要利用公式tan =化成正弦、余弦,或者利用公式=tan 化成正切2.“1”的变换:1=sin2+cos2=cos2(1+tan2)=(sin ±cos )22sin cos =tan3.和积转换:利用关系式(sin ±cos )2=1±2sin cos 进行变形、转化整体代换问题【典例】(2022·合肥模拟)tan =-,那么sin (sin -cos )=()A.B.C.D.【解析】选A.sin (sin -cos )=sin2-sin cos =,将tan =-代入得原式=.整体代换是如何实现的?提示:弦切互化法:主要利用公式tan x=进行切化弦或弦化切,如,asin2x+bsin xcos x+ccos2x等类型可进行弦化切.sin ±cos 与sin ·cos 之间的关系【典例】(2022·苏州模拟)sin +cos =,(0,),那么tan 的值为_. 【解析】因为sin +cos =,两边平方,得1+2sin cos =,所以2sin cos =-,又(0,),所以sin >0,cos <0,因为(sin -cos )2=1-2sin cos =,所以sin -cos =,由得sin =,cos =-,所以tan =-.答案:- 一般求值问题的步骤如何?提示:(1)将条件或所求式子利用诱导公式进行化简.(2)从条件中结合三角函数关系得出需要的结论.(3)代入化简后的所求式子,得出最后的结论.同角关系与诱导公式综合应用【典例】(2022·镇江模拟)tan(3+)=3,那么= ()A.B.C.D.2【解析】选B.因为tan(3+)=3,所以tan =3,所以=.运用“切弦互化时有哪些考前须知?提示:(1)弦化切:把正弦、余弦化成切的结构形式,统一为“切的表达式,进行求值.常见的结构有:sin ,cos 的二次齐次式(如asin2+bsin cos +ccos2)的问题常采用“切代换法求解;sin ,cos 的齐次分式的问题常采用分式的根本性质进行变形.(2)切化弦:一般单独出现正切、余切的时候,运用公式tan =,把式子中的切化成弦.1.-<<0,sin +cos =,那么的值为()A.B.C.D.【解析】选B.因为-<<0,所以cos >0,sin <0,可得cos -sin >0,因为(sin +cos )2+(cos -sin )2=2,所以(cos -sin )2=2-(sin +cos )2=2-=,cos -sin =,cos2 -sin2=×=,所以的值为.2.(2022·唐山模拟)sin=,所以tan 的值为()A.- B.- C.±D.±【解析】选C.sin=sin=cos =,所以sin =±,tan =±.3.,tan(-)=-,那么sin +cos 的值是_. 【解析】tan(-)=tan =-,又,所以sin =,cos =-,所以sin +cos =-.答案:-1.(2022·南充模拟)设f(x)=asin(x+)+bcos(x+),其中a,b,都是非零实数.假设f(2 019)=-1,那么f(2 020)=()A.1B.2C.0D.-1【解析】选A.因为f(2 019)=asin(2 019+)+bcos(2 019+)=-asin -bcos =-1,所以asin +bcos =1,所以f(2 020)=asin(2 020+)+bcos(2 020+)=asin +bcos =1.2.(2022·淮安模拟)假设tan +=,那么的值为_. 【解析】因为tan +=,所以tan =2或(舍去),所以=.答案:3.(2022·通州模拟)如图是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形,假设直角三角形中较小的内角为,大正方形的面积是1,小正方形的面积是,那么sin2-cos2的值是_. 【解析】由题图知,每个直角三角形长直角边为cos ,短直角边为sin ,小正方形边长为cos -sin ,因为小正方形的面积是,所以(cos -sin )2=,又为直角三角形中较小的锐角,所以cos >sin ,cos -sin =,又(cos -sin )2=1-2sin cos =,所以2sin cos =,(cos +sin )2=1+2sin cos =,cos +sin =,所以sin2-cos2=(sin -cos )(cos +sin )= - ×=- .答案:- - 8 -