2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数定向测试试卷(含答案详解).docx
-
资源ID:32508736
资源大小:448.89KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数定向测试试卷(含答案详解).docx
沪教版(上海)七年级数学第二学期第十二章实数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式正确的是( )ABCD2、实数2,0,3,中,最小的数是()A3BC2D03、下列说法正确的是( )A0.01是0.1的平方根 B小于0.5C的小数部分是D任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方如此进行下去,得到的数会越来越趋近14、下列整数中,与1最接近的是( )A2B3C4D55、如果x1,那么x1,x,x2的大小关系是()Ax1xx2Bxx1x2Cx2xx1Dx2x1x6、估计的值在( )A5到6之间B6到7之间C7到8之间D8到9之间7、下列判断:10的平方根是±;与互为相反数;0.1的算术平方根是0.01;()3a;±a2其中正确的有()A1个B2个C3个D4个8、9的平方根是()A±9B9C±3D39、在下列四个实数中,最大的数是()A0B2C2D10、下列各数中,最小的数是( )A0BCD3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、给定二元数对(p,q),其中或1,或1三种转换器A,B,C对(p,q)的转换规则如下:(1)在图1所示的“ABC”组合转换器中,若输入,则输出结果为_;(2)在图2所示的“C”组合转换器中,若当输入和时,输出结果均为0,则该组合转换器为“_C_”(写出一种组合即可)2、已知x、y满足关系式0,则xy的算术平方根为_3、已知4321849,4421936,4522025,4622116,若n为整数且nn1,则n的值是_4、在实数范围内分解因式:a23b2_5、实数在数轴上的位置如图所示,则化简的结果为_三、解答题(10小题,每小题5分,共计50分)1、已知a216,b327,求ab的值2、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;(2)如图2,在4×4方格中阴影正方形的边长为a写出边长a的值请仿照(1)中的作图在数轴上表示实数a+13、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天哪一种方法得到的钱数多?请说明理由(1年按365天计算)4、如果一个四位数m满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为,十位数字与个位数字之和记为,记F(m),若F(m)为整效,则称这个数为“运算数“,例如:F(5332)3,3是整数,5332是“运算数”;F(1722),不是整数,1722不是“运算数”(1)请判断9981与2314是否是“运算数”,并说明理由(2)若自然数s和t都是“运算数”,其中s8910+11x(2x8,且x为整数);t的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F(t)4,规定:k,求所有k的值5、计算:(1);(2)6、计算 7、计算下列各题:(1);(2)(3)8、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为a,b例如:和,因为,所以,则称和为一组团结数对,记为根据以上定义完成下列各题:(1)找出2和2,1和3,2和这三组数中的团结数对,记为 ;(2)若5,x成立,则x的值为 ;(3)若a,b成立,b为按一定规律排列成1,3,9,27,81,243,这列数中的一个,且b与b左右两个相邻数的和是567,求a的值9、计算:(1);(2)10、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b9)20,c1(1)a ,b ;(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|xa|xb|取得最大值,最大值为 ;(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?-参考答案-一、单选题1、D【分析】一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论【详解】解:A、,原式错误,不符合题意;B、,原式错误,不符合题意;C、,原式错误,不符合题意;D、,原式正确,符合题意;故选:D【点睛】本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键2、A【分析】根据实数的性质即可判断大小【详解】解:302故选A【点睛】此题主要考查实数的大小比较,解题的关键是熟知实数的性质3、C【分析】根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可【详解】解:A、0.1是0.01的平方根,原说法错误,不符合题意;B、由,得,原说法错误,不符合题意;C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;故选:C【点睛】本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键4、A【分析】先由无理数估算,得到,且接近3,即可得到答案【详解】解:由题意,且接近3,最接近的是整数2;故选:A【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近35、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法6、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可【详解】,故选:C【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围7、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是±,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根8、C【分析】根据平方根的定义解答即可【详解】解:(±3)29,9的平方根是±3故选:C【点睛】此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义如果一个数的平方等于a,即,那么这个数叫做a的平方根正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根9、C【分析】先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可【详解】解:正数,负数,排除,最大的数是2,故选:【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键10、C【分析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:,所给的各数中,最小的数是故选:C【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小二、填空题1、1 A A 【分析】(1)利用转换器C的规则即可求出答案(2)利用转换器A、B、C的规则,写出一组即可【详解】(1)解:利用转换器C的规则可得:输出结果为1(2)解:当输入时,若对应A,此时经过A、C输出结果为(1,0),对应A,输出结果恰好为0当输入时,若对应A,此时经过A、C输出结果为(0,1),对应A,输出结果恰好为0故答案为:1;A;A【点睛】本题主要是新定义题目,利用题目所给规则,进行分析判断,即可解答出该题目2、4【分析】直接利用算术平方根以及偶次方的性质得出x,y的值,进而得出答案【详解】解:,x+4=0,y-2=0,解得:x=-4,y=2,故xy=(-4)2=16,16的算术平方根是:4故答案为:4【点睛】本题主要考查了算术平方根以及偶次方的性质,正确得出x,y的值是解题关键3、44【分析】由题意可直接进行求解【详解】解:4421936,4522025,;故答案为44【点睛】本题主要考查无理数的估算,熟练掌握无理数的估算是解题的关键4、(a+)(a)a)(a+)【分析】根据平方差公式因式分解,运用2次,注意分解要彻底【详解】a23b2a2()2(a+)(a)【点睛】本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底5、1【分析】由数轴可知,则有,然后问题可求解【详解】解:由数轴可知:,;故答案为1【点睛】本题主要考查数轴、算术平方根及整式的加减运算,熟练掌握数轴、算术平方根及整式的加减运算是解题的关键三、解答题1、64或64【分析】根据平方根、立方根、有理数的乘方解决此题【详解】解:a216,b327,a±4,b3当a4,b3时,ab4364当a4,b3时,ab(4)364综上:ab64或64【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键2、(1),1+;(2);见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:,由题意得:点表示的实数为:,故答案为:,;(2)阴影部分正方形面积为:,求其算术平方根可得:,如图所示:点表示的数即为【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键3、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n1元钱即可得总数,然后比较大小即可知哪种方案得到的多【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+219=2201=1048575分=10485.75元10485.753650第二种方法得到的钱多【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在4、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据找出,设,其中,且为整数,由,找出的值,代入中即可得解【详解】(1),9是整数,9981是“运算数”,不是整数,2314不是“运算数”;(2),且为整数,可为:8932,8943,8954,8965,8976,8987,8998,是“运算数”,的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为,个位数上的数字为,则千位上的数字为,十位上的数字为,其中且为整数,即,当时,其他情况不满足题意,【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键5、(1);(2).【分析】(1)由题意利用算术平方根和立方根的性质进行化简计算即可;(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.【详解】解:(1)(2)【点睛】本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.6、【分析】根据立方根,算术平方根,绝对值的计算法则进行求解即可【详解】解:【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则7、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加(1)解:原式;(2)解:原式;(3)解:【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a0),(a0),牢记法则是解题关键8、(1)2,2,2,(2)(3)【解析】(1)和2是一组团结数,即为,和3不是一组团结数,和是一组团结数,即为,故答案为:,;(2)若5,x成立,则故答案为:;(3)设b左面相邻的数为x,b为3x,b右面相邻的数为9x由题意可得 解得 x81 所以 b243 由于a,b成立,则a243243a,解得【点睛】本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键9、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可【详解】解:(1),=,=1;(2),=,=,=,=【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键10、(1)3,9;(2)9,12;(3)秒或秒【分析】(1)由|a+3|+(b9)20,根据非负数的性质得|a+3|0,(b9)20,即可求出a3、b9;(2)由(1)得a3、b9,则代数式|xa|xb|即代数式|x+3|x9|,按x3、3x9及x9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可【详解】解:(1)|a+3|0,(b9)20,且|a+3|+(b9)20,|a+3|0,(b9)20,a3,b9,故答案为:3,9(2)a3,b9,代数式|xa|xb|即代数式|x+3|x9|,当x3时,|x+3|x9|(x+3)(9x)12;当3x9时,|x+3|x9|x+3(9x)2x6,122x612,12|x+3|x9|12;当x9时,|x+3|x9|x+3(x9)12,综上所述,|x+3|x9|的最大值为12,故答案为:9,12(3)点C表示的数是1,点B表示的数是9,B、C两点之间的距离是918,当点Q与点C重合时,则2t8,解得t4,当0t4时,如图1,点P表示的数是3t,点Q表示的数是92t,根据题意得92t(3t)2×2t,解得t;当4t8时,如图2,点P表示的数仍是3t,1+(2t8)2t7,点Q表示的数是2t7,根据题意得2t7(3t)2(162t),解得t,综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键