2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数同步训练试题(无超纲).docx
-
资源ID:32512216
资源大小:331.10KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十二章实数同步训练试题(无超纲).docx
沪教版(上海)七年级数学第二学期第十二章实数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式正确的是( )ABCD2、实数在哪两个连续整数之间( )A3与4B4与5C5与6D12与133、下列说法中错误的是()A9的算术平方根是3B的平方根是C27的立方根为D平方根等于±1的数是14、如果a、b分别是的整数部分和小数部分,那么的值是( )A8BC4D5、下列说法正确的是( )A的相反数是B2是4的平方根C是无理数D6、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )ABCD7、估计的值应该在( )A1和2之间B2和3之间C3和4之间D4和5之间8、下列各数中,比小的数是( )ABCD9、4的平方根是()A2B2C±2D没有平方根10、如果x1,那么x1,x,x2的大小关系是()Ax1xx2Bxx1x2Cx2xx1Dx2x1x第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算下列各题:(1)|34|1_;(2)_;(3)30_;(4)_2、如图,A,B,C在数轴上对应的点分别为a,1,其中a1,且ABBC,则|a|_3、比较大小:_4、已知,则|x3|x1|_5、若a、b为实数,且,则ab的值_三、解答题(10小题,每小题5分,共计50分)1、计算:+2、已知的立方根是2,算术平方根是4,求的算术平方根3、计算(1)(2)4、求下列各式中的x:(1);(2)5、计算:6、解答下列各题:(1)计算: (2)分解因式:7、计算:8、计算(1);(2)9、已知一个正数x的平方根是a+3和2a-15,求a和x的值10、(1)计算:;(2)求下列各式中的x:;(x+3)327-参考答案-一、单选题1、C【分析】根据算术平方根的定义和性质,立方根的定义逐项分析判断即可【详解】A. ,故该选项不正确,不符合题意;B. 无意义,故该选项不正确,不符合题意; C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选C【点睛】本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数)2、B【分析】估算即可得到结果【详解】解:,故选:B【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则3、C【分析】根据平方根,算术平方根,立方根的性质,即可求解【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于±1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键4、B【分析】先求得的范围,进而求得的范围即可求得的值,进而代入代数式求值即可【详解】则a、b分别是的整数部分和小数部分,则故选B【点睛】本题考查了估算无理数的大小,二次根式的混合运算,求得的值是解题的关键5、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案【详解】解:A 负数没有平方根,故无意义,A错误;B,故2是4的平方根,B正确;C是有理数,故C错误;D ,故D错误; 故选B【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义6、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答【详解】解:数轴上表示1,的对应点分别为A,B,AB1,点B关于点A的对称点为C,ACAB点C的坐标为:1(1)2故选:C【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数知道两点间的距离,求较小的数,就用较大的数减去两点间的距离7、C【分析】根据252936估算出的大小,然后可求得的范围【详解】解:252936,即568、A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【详解】解:A. <-3,故A正确;B. >-3,故B错误;C. >-3,故C错误;D. >-3,故D错误.故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.9、C【分析】根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可【详解】解:4的平方根,即:,故选:C【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键10、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法二、填空题1、0 3 1 【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得【详解】解:(1)原式,故答案为:0;(2)原式,故答案为:3;(3)原式,故答案为:1;(4)原式,故答案为:【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键2、【分析】先根据数轴上点的位置求出,即可得到,由此求解即可【详解】解:A,B,C在数轴上对应的点分别为a,1, ,故答案为:【点睛】本题主要考查了实数与数轴,解题的关键在于能够根据题意求出3、【分析】先把两个数同时平方后比较大小,因为都是正数,即平方后的数越大,其这个数越大,由此求解即可【详解】解:,故答案为:【点睛】本题主要考查了实数比较大小,解题的关键在于能够熟练掌握实数比较大小的方法4、2【分析】得出x-30,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果【详解】解:,12,23,x-30,x-1>0,|x3|x-1|=3-x+(x-1)=3-x+x-1=2故答案为:2【点睛】本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键5、3【分析】根据平方的非负性及算术平方根的非负性求出a及b的值,代入计算即可【详解】解:,=3,故答案为:3【点睛】此题考查了平方的非负性及算术平方根的非负性,以及实数的乘方运算,正确掌握平方的非负性及算术平方根的非负性是解题的关键三、解答题1、【分析】先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得【详解】解:原式【点睛】本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键2、【分析】根据立方根、算术平方根解决此题【详解】解:由题意得:2a+4=8,3a+b-1=16a=2,b=114a+b=8+11=194a+b的算术平方根为【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键3、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)解:;(2)解:【点睛】本题考查实数的混合运算掌握运算方法与运算顺序是解出本题的关键4、(1);(2)【分析】(1)方程整理后,开方即可求出x的值;(2)方程开立方即可求出x的值【详解】(1)等式两边同时除以2得:,两边开平方得:;(2)两边开立方得:,等式两边同时减去1得:【点睛】本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键5、【分析】分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.【详解】解:原式【点睛】本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.6、(1);(2)【分析】(1)原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;(2)原式提取公因式x,再利用完全平方公式分解即可【详解】解:(1) (2)【点睛】此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键7、7【分析】根据实数的性质化简即可求解【详解】解:原式【点睛】此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则8、(1)1;(2)【分析】(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;(2)先立方根,零指数幂,绝对值化简,去括号合并即可【详解】解:(1),=,=1;(2),=,=【点睛】本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键9、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:正数有2个平方根,它们互为相反数,解得,所以【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.10、(1);(2);【分析】(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;(2)对等式进行开平方运算,再把x的系数转化为1即可;对等式进行开立方运算,再移项即可【详解】解:(1)2(2)33;(2)±3x±6;(x+3)327x+33x6【点睛】本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用