2021-2022学年浙教版初中数学七年级下册第五章分式章节测评试卷(精选).docx
-
资源ID:32513616
资源大小:221.44KB
全文页数:14页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年浙教版初中数学七年级下册第五章分式章节测评试卷(精选).docx
初中数学七年级下册第五章分式章节测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、据医学研究:新型冠状病毒的平均米,米用科学记数法表示为( )A米B米C米D米2、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( )A85×10-6B8.5×10-5C8.5×10-6D0.85×10-43、肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A7.1×109B7.1×108C7.1×107D7.1×1064、下列分式的变形正确的是()ABx+yCD5、若,则可用含和的式子表示为( )ABCD6、随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持目前,该芯片工艺已达22纳米(即0.000000022米)则数据0.000000022用科学记数法表示为()A0.22×107B2.2×108C22×109D22×10107、医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为()A0.6×108B6×108C60×107D0.6×1078、己知关于x的分式的解为非负数,则a的范围为( )A且B且C且D且9、2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒将数据0.0000000099用科学记数法表示为( )ABCD10、用科学记数法表示数0.0000104为( )ABCD二、填空题(5小题,每小题4分,共计20分)1、计算:_2、如果分式有意义,那么x的取值范围是 _3、已知,则a,b,c的大小关系为_4、已知:(x1)x+31,则整数x的值是_5、已知(x1)x+21,则整数x_三、解答题(5小题,每小题10分,共计50分)1、端午节前夕,肉粽的单价比蜜枣粽的单价多4元,用200元购买肉粽与用100元购买蜜枣粽的只数相同(1)肉粽和蜜枣粽的单价分别是多少元?(2)某商铺端午节前夕用800元购买了肉粽和蜜枣粽;端午节后由于肉粽单价打了6折,蜜枣粽的单价打了5折,该商铺又买了与节前同样数量的肉粽和蜜枣粽,只花了420元,求该商铺每次购买肉粽和蜜枣粽的只数2、先化简,再求值:,其中x1.3、探索发现:1;根据你发现的规律,回答下列问题:(1) , ;(2)利用你发现的规律计算:4、计算或化简:(1); (2)5、计算:-参考答案-一、单选题1、D【分析】根据科学记数法:把一个大于0的数表示成的形式(其中,n是整数),由此问题可求解【详解】解:把米用科学记数法表示为米;故选D【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键2、B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解: 0.000085=8.5×10-5, 故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、C【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.000000717.1×107故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值4、D【分析】根据分式的基本性质,分别进行判断,即可得到答案【详解】解:A、,故此选项不符合题意;B、是最简分式,不能再约分,故此选项不符合题;C、是最简分式,不能再约分,故此选项不符合题意;D、,正确,故此选项符合题意;故选:D【点睛】本题考查了分式的基本性质解题的关键是掌握分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为05、D【分析】先将转化为关于b的整式方程,然后用a、s表示出b即可【详解】解:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤6、B【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.0000000222.2×108故选:B【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值7、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000066×108,故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、A【分析】先求出分式方程的解,然后根据分式方程的解是非负数以及分式有意义的条件求解即可.【详解】解:,分式方程的解为非负数且分式方程要有意义,解得且,故选A.【点睛】本题主要考查了解分式方程以及分式方程有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.9、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 a×,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数 n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解: 0.0000000099=,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为 a×,其中 1|a|<10 , n 为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000104=1.04×10-5,故选:B【点睛】本题考查科学记数法,解答本题的关键是明确科学记数法的方法二、填空题1、【分析】根据分式的乘法运算法则计算即可【详解】故答案为【点睛】本题考查了分式的乘法运算,掌握分式的乘法法则是解题的关键2、x5【分析】根据分式有意义的条件可得x+50,即可得出答案【详解】解:由题意得:x+50,解得:x5,故答案为:x5【点睛】本题考查了分式有意义的条件,分式有无意义的判断方法,分式有意义的条件:分式的分母不等于0, 分式无意义的条件:分式的分母等于03、【分析】分别求出各数的值,再比较大小即可【详解】解:,;,;故答案为:【点睛】本题考查了负指数、0指数和乘方运算,解题关键是熟记负指数、0指数和乘方运算的法则,准确进行计算4、3或2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案【详解】解:(x1)x+31,x30且x10或x11或x11且x3为偶数,解得:x3或x2,故x3或2故答案为:3或2【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确分类讨论是解题关键5、2、0、2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案【详解】解:(x1)x+21,x+20且x10或x11或x11且x+2为偶数,解得:x2、x2或x0,故x2或2或0故答案为:2、0、2【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确分类讨论是解题关键三、解答题1、(1)肉粽的单价为8元,蜜枣粽的单价为4元;(2)每次购买肉粽25只,购买蜜枣粽150只【分析】(1)设蜜枣粽的单价为元,则肉粽的单价为元,再根据用200元购买肉粽与用100元购买蜜枣粽的只数相同,列方程,解方程可得答案;(2)设每次购买肉粽只,购买蜜枣粽只,再利用节前的两种粽子的总价之和为800元,节后两种粽子的总价之和为420元,列方程组,再解方程组可得答案.【详解】解:(1)设蜜枣粽的单价为元,则肉粽的单价为元由题意得:,解得:,经检验得:是原方程的根,答:肉粽的单价为8元,蜜枣粽的单价为4元(2)设每次购买肉粽只,购买蜜枣粽只由题意得:,解得:答:每次购买肉粽25只,购买蜜枣粽150只【点睛】本题考查的是分式方程的应用,二元一次方程组的应用,理解题意,确定好相等关系是解题的关键.2、,【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值;【详解】解:原式=,=,=,=,当时,原式=【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键3、(1),;(2)【分析】(1)观察已知等式,写出所求即可;(2)归纳总结得到一般性规律,写出即可;【详解】解:(1),(2)原式 , 【点睛】此题考查了有理数的混合运算,以及规律型:数字的变化类,弄清题中的规律是解本题的关键4、(1)10;(2)【分析】(1)先化简绝对值,乘方,零指数幂,负指数幂,再计算乘法与符号化简,最后计算加减法;(2)根据多项式除以单项式转化为单项式除以单项式计算即可【详解】解:(1),;(2) 【点睛】本题考查实数混合运算,零指数幂,与负指数幂,多项式除以单项式,掌握实数混合运算法则,多项式除以单项式运算法则,零指数幂,与负指数幂是解题关键5、【分析】根据分式的混合运算法则先将分式的分子和分母因式分解,然后先算乘除,后算加减求解即可【详解】解:原式【点睛】本题考查的是分式混合运算,熟知分式混合运算的法则是解答此题的关键