2022年最新人教版九年级数学下册第二十七章-相似定向攻克试题(无超纲).docx
-
资源ID:32517135
资源大小:629.09KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版九年级数学下册第二十七章-相似定向攻克试题(无超纲).docx
人教版九年级数学下册第二十七章-相似定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,DEBC,则下列式子正确的是( )ABCD2、已知:矩形OABC矩形OA'BC,B(10,5),AA'1,则CC的长是()A1B2C3D43、如图,在ABC中,点D,E分别是AC和BC的中点,连接AE,BD交于点F,则下列结论中正确的是( )ABCD4、如图,点E,D,F在ABC的三边上,四边形AEDF是菱形,若,则的值为()ABCD5、如图,某学生利用标杆测量一棵大树的高度,如果标杆EC的高为2m,并测得,那么树DB的高度是( )A6mB8mC32mD25m6、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D将ODA绕点O顺时针旋转得到OD'A',当点D的对应点D'落在OA上时,D'A'的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)7、已知点P是线段AB的黄金分割点,APPB若AB2,则AP的长为()AB3C1D38、如图,BC2,则AB的长为( )A6B5C4D39、如图1,物理课上学习过利用小孔成像说明光的直线传播现将图1抽象为图2,其中线段AB为蜡烛的火焰,线段AB为其倒立的像如果蜡烛火焰AB的高度为2cm,倒立的像AB的高度为5cm,线段OA的长为4cm,那么线段OA的长为()A4cmB5cmC8cmD10cm10、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA26+26B2626C13+13D1313第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABCACD,若AD5,BD4,则ACD与ABC的相似比为_2、如图,矩形中,是的中点,是线段上的动点,则的最小值是_3、已知B是线段AC的黄金分割点,ABBC,若AC6,则AB的长为_(结果保留根号)4、如图,双曲线经过Rt斜边上的中点A,与BC交于点D,则_5、已知点 是线段 的黄金分割点, 果 , 则 _三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每一个小正方形的边长都为1,ABC的顶点分别为A(2,3),B(2,1),C(5,4)(1)只用直尺在图中找出ABC的外心P,并写出P点的坐标_(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的左侧将ABC放大为ABC,放大后点A、B、C的对应点分别为A、B、C,请在图中画出ABC;(3)若以A为圆心,为半径的A与线段BC有公共点, 则的取值范围是_2、定义:点P与图形W上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形W的距离,记为d(P,图形W)例如,在图1中PA13,则d(P,图形W)3特别地,点P在图形W上,则点P到图形的距离为0,即d(P,图形W)0(1)概念理解:如图2,在直角坐标系xOy中,点O是坐标原点,点A在x轴正半轴上,点B在第一象限,且AOB60°若M(0,2),N(1,0),则d(M,AOB) ,d(N,AOB) 若点P是O内一点,O的半径是5,OP3,则d(P,O) (2)灵活运用:如图3,已知点A(4,4),B(7,8)点P是y轴上的一动点当d(P,射线AB)6时,求点P的坐标;(3)深入思考:如图4,边长为1的正方形ABCD,绕其顶点A(1,0)顺时针旋转,点P(m1,2m6)是平面内一点在正方形旋转过程中,记d(P,正方形ABCD)的最大值、最小值分别为:d1、d2,则d1+d2 3、如图,四边形中,平分,为的中点(1)求证:;(2)求证:;(3)若,求的值4、如图,在平面直角坐标系中,点、点的坐标分别为,(1)画出绕点顺时针旋转后的;(2)以点为位似中心,相似比为,在轴的上方画出放大后的;5、如图,点P是正方形边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°,得到线段PE,PE交边BC于点F,连接BE,DF(1)若,求;(2)若,求;(3)若,求-参考答案-一、单选题1、B【解析】【分析】由题意直接根据平行线所截线段成比例进行分析判断即可.【详解】解:DEBC,,,.故选:B.【点睛】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键2、B【解析】【分析】根据坐标与图形性质求出OA'=5,进而得出矩形OABC与矩形OA'B'C'的相似比为4:5,计算即可【详解】解:点B的坐标为(10,5),AA'=1,OA'=5,OA=4,矩形OABC与矩形OA'B'C'的相似比为4:5,OC:OC'=4:5,OC=8,CC'=10-8=2,故选:B【点睛】本题考查了坐标与图形性质,正确求出矩形OABC与矩形OA'B'C'的相似比是解题的关键3、D【解析】【分析】根据三角形的中位线的性质和相似三角形的判定和性质定理即可得到结论【详解】解:点D,E分别是AC和BC的中点,DEBC,DEFBFA,故A选项错误;故B选项错误;DEFBAF,故C选项错误; D为AC的中点,AD=CD ,故D选项正确;故选:D【点睛】本题考查了三角形的中位线的性质,相似三角形的判定和性质,正确的识别图形是解题的关键4、C【解析】【分析】根据菱形的性质可得,进而可得,进而可得【详解】解:点E,D,F在ABC的三边上,四边形AEDF是菱形,,故选C【点睛】本题考查了菱形的性质,平行线分线段成比例,掌握平行线分线段成比例是解题的关键5、B【解析】【分析】根据三角形ACE与三角形ABD相似,得到对应边成比例,建立等式求解【详解】解:由题意可得,CEBD,即解得BD8m,故选B【点睛】本题考查了相似三角形的判定与性质,在三角形中一平行线平行于第三边,则这个平行线所截的小三角形与原三角形相似,相似三角形对边边成比例6、D【解析】【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键7、C【解析】【分析】根据黄金分割点的定义,知是较长线段;则,代入数据即可得出的长度【详解】解:由于为线段的黄金分割点,且是较长线段;则故选:C【点睛】本题考查了黄金分割点的概念,解题的关键是熟记黄金比的值进行计算8、C【解析】【分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查了平行线分线段成比例,正确找到对应边长的比例式,是求解这类问题的关键9、D【解析】【分析】由AB/ AB,可得AOBAOB进而根据相似三角形的性质列出比例代入数据求解即可【详解】AB/ AB,AOBAOB, ,即 ,cm,故选D【点睛】本题考查了相似三角形的判定与性质,掌握相似三角形的性质与判定是解决本题的关键10、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长,由此求解即可【详解】解:一种数学课本的宽与长之比为黄金比,宽:长,长是26cm,宽,故选D【点睛】本题主要考查了黄金比,解题的关键在于能够熟练掌握黄金分割比例二、填空题1、【解析】【分析】根据ABCACD,可以得到,即AC2=ABAD,由此可得出AC的长【详解】解:ABCACD,AD=5,BD=4,即AC2=ABAD,故答案为:【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应边的比等于相似比是解答此题的关键2、【解析】【分析】先利用勾股定理求出的长,再根据垂线段最短可得当时,取得最小值,然后根据相似三角形的判定证出,最后根据相似三角形的性质即可得【详解】解:矩形中,是的中点,由垂线段最短可知,当时,取得最小值,在和中,即,解得,即的最小值是,故答案为:【点睛】本题考查了垂线段最短、矩形的性质、相似三角形的判定与性质等知识点,正确找出两个相似三角形是解题关键3、#【解析】【分析】根据黄金分割的定义得到,把AC6代入计算即可解题【详解】解:B是线段AC的黄金分割点, AC64、14【解析】【分析】过A作轴于点E,根据反比例函数的比例系数k的几何意义可得,由,得,相似三角形面积的比等于相似比的平方,据此即可求得,从而求得k的值【详解】如图,作轴,则,轴,点A是OB中点,解得:,反比例函数过第一象限,故答案为:14【点睛】本题考查反比例函数系数k的几何意义、相似三角形的判定与性质,熟知“过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于”是解题的关键5、#【解析】【分析】根据黄金分割比可直接进行列式求解【详解】解:点C是线段AB的黄金分制点,且AC>BC, 故答案为:【点睛】本题主要考查了黄金分割点的定义,即:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,黄金分割比为三、解答题1、(1)(4,2);(2)见解析;(3)【解析】【分析】(1)根据三角形的外接圆的圆心是三边垂直平分线的交点即可找到点P;(2)根据位似中心与三角形三个顶点的连线将原三角形扩大2倍即可;(3)根据直线和圆的位置关系:当半径大于或等于点A到BC的距离时,A与线段BC有一个或两个公共点即可【详解】解:如图所示:(1)点P即为ABC的外心,P点的坐标为(4,2),故答案为:(4,2);(2)图中画出的ABC即为所求作的图形;(3)观察图形可知:r=时,A与线段BC有一个公共点此时A与线段BC相切,当时,A只经过点,的取值范围是故答案为:【点睛】本题考查了作图位似变换、三角形的外接圆与圆心、直线与圆的位置关系,解决本题的关键是根据位似中心画位似图形2、(1)1,1;2;(2)P(0,42)或(0,);(3)【解析】【分析】(1)求点M到OB的垂线段的长;根据“点P到图形W的距离”的定义求解即可;(2)圆内一点到圆上最小距离是,这点与圆心的形成的半径减去这点与圆心的距离;(2)作BCAD于C,分为点P在CD的下方时和P在CD上方时两种情形,当点P在CD的下方时,由d(P,射线AB)=PA=6,根据勾股定理求得DP,进而求得点P坐标,当P在CD上方时,作AEAB交y轴于E,先证明ADEBCA,作PHAB,证明PGHEDA,进一步求得P点坐标【详解】解:(1)如图1,作MPOB于P,OPM90°,OM2,POM90°AOB30°,PM,d(M,AOB)1,ON1,d(N,AOB)1,故答案是:1,1;如图2,PQOQOP2,d(P,O)2,故答案是:2;(2)如图3,点A(4,4),B(7,8),AB5,设直线AB的解析式是 把A(4,4),B(7,8)代入,得 直线AB的解析式是:,作BCAD于C,当点P在CD的下方时,d(P,射线AB)PA6,DP2,OPPDOD24,P(0,42),当P在CD上方时,作AEAB交y轴于E,EABADEC90°,EAD+BAC90°,DEA+DAE90°,AEDBAC,BCAD4,ADEBCA(AAS),AEAB5,DEAC3,作PHAB于H,作HGOD于G,PHAE,GPHAED,PGHEDA, ,PG,GH,当x时,y,OG,OPOG+PG,P(0,),综上所述:P(0,42)或(0,);(3)如图4,令xm1,y2m6,y2x4,记作直线MN,其中M(2,0),N(0,4),MN2,以A为圆心,AC长为半径作圆A,作AHNM于H,直线AH交圆O于E和F,AD1,ACAMHOMN,AHMMON90°,AHMNOM,AH,EHAHAE,FHAF+AH,d1FH,d2EH,d1+d2,故答案是:【点睛】本题在理解的基础上,转化运用了全等三角形的判定和性质,相似三角形的判定和性质,一次函数及其图象性质,解直角三角形等知识,解决问题的关键是理解题意,转化题意,熟练运用有关基本知识3、(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)先根据相似三角形的判定证出,再根据相似三角形的性质即可得证;(2)先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据平行线的判定即可得证;(3)先根据相似三角形的判定证出,再根据相似三角形的性质可得,由此即可得出答案【详解】证明:(1)平分,在和中,;(2),为的中点,由(1)已得:,;(3),为的中点,由(2)已证:,即,【点睛】本题考查了相似三角形的判定与性质、平行线的判定等知识点,熟练掌握相似三角形的判定与性质是解题关键4、(1)见解析;(2)见解析【解析】【分析】(1)找到O,A绕点顺时针旋转后的对应点O',A',顺次连接O',A',B,则即为所求;(2)延长BO'至O,BA'至A,使得BO=2BO',BA=2BA',连接AO,则即为所求【详解】(1)如图,找到O,A绕点顺时针旋转后的对应点O',A',顺次连接O',A',B,则即为所求;(2)如图,延长BO'至O,BA'至A,使得BO=2BO',BA=2BA',连接AO,则【点睛】本题考查了画旋转图形,在平面直角坐标系中画位似图形,掌握旋转的性质和位似图形的性质是解题的关键5、(1)32°;(2);(3)APAB=12【解析】【分析】(1)根据ADP与EPB都是APD的余角,根据同角的余角相等,即可求证;(2)首先证得PADEQP,可以证得BEQ是等腰直角三角形,可以证得EBQ=45°,即可证得CBE=45°;(3)先由PFDBFP,得出PDBF=PBPF,再判断出DAPPBF,得出PDBF=APPF,进而得出PA=PB,即可得出AB=2PA,即可得出结论【详解】(1)证明:四边形ABCD是正方形A=PBC=90°,AB=AD,ADP+APD=90°,DPE=90°,APD+EPB=90°,ADP=FPB=32°;(2)解:过点E作EQAB交AB的延长线于点Q,则EQP=A=90°,在PAD与EQP中,AEQPADPEPBPDPE,PADEQP(AAS),EQ=AP=3,AD=AB=PQ,AP=EQ=BQ,CBE=EBQ=45°;BE=2EQ=6(3)PFDBFP,PBBF=PDPF,PDBF=PBPF,ADP=EPB,CBP=A=90°,DAPPBFPDPF=PABF,PDBF=APPF,PBPF=APPF,PA=PB,AB=PA+PB=2PA,APAB=12【点睛】此题是相似形综合题,主要考查了正方形的性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出PA=PB是解本题的关键