2022年精品解析北师大版九年级数学下册第二章二次函数同步测试试卷(无超纲带解析).docx
-
资源ID:32519620
资源大小:677.52KB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析北师大版九年级数学下册第二章二次函数同步测试试卷(无超纲带解析).docx
北师大版九年级数学下册第二章二次函数同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数yax2+bx+c的部分图象如图所示,则关于x的一元二次方程ax2+bx+c0的解为()Ax13,x20Bx13,x21Cx13,x21Dx13,x212、二次函数的图象开口( )A向下B向上C向左D向右3、某种爆竹点燃后升空,并在最高处燃爆该爆竹点燃后离地高度h(单位:m)关于离地时间t(单位:s)的函数解析式是h = 20 t - 5 t2,其中t的取值范围是( )At0B0t2C2t4D0t44、抛物线y = a + bx + c的对称轴是( )Ax=Bx = - Cx =Dx = - 5、某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为( )A21元B22元C23元D24元6、如图1所示,DEF中,DEF90°,D30°,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D487、若点A(1,y1),B(2,y2),C(m,y3)在抛物线y = a (x+1)2 + c(a 0)上,且m的值不可能是( )A5B3C- 3D- 58、已知二次函数y(xm)2m+1(m为常数)二次函数图象的顶点始终在直线yx+1上 当x2时,y随x的增大而增大,则m=2点A(x1,y1)与点B(x2,y2)在函数图象上,若x1x2,x1+x22m,则y1y2 其中,正确结论的个数是( )A0个B1个C2个D3个9、已知二次函数的图象如图所示,则下列结论正确的是( )ABCD10、抛物线的顶点坐标是( )A(1,2)B(1,)C(,2)D(,)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD的边长为2,E为边AD上一动点,连接CE,以CE为边向右侧作正方形CEFG,连接DF,DG,则面积的最小值为_2、二次函数(为常数)与轴的一个交点为(1,0),则另一个交点为_3、如图,RtABC中,ACB=90°,AC=BC=2,点P是AB上一动点,连接CP,将线段CP绕点C顺时针旋转90°得到线段CQ,连接PQ,AQ,则PAQ面积的最大值为_4、将二次函数的图象向右平移1个单位长度,再向下平移2个单位长度,所得新抛物线的解析式为_5、定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段MN长就是抛物线关于直线的“割距”已知直线与x轴交于点A,与y轴交于点B,点B恰好是抛物线的顶点,则此时抛物线关于直线y的割距是_三、解答题(5小题,每小题10分,共计50分)1、如图所示,在坐标系xOy中,抛物线yx2+bx+c与x轴交于点A,B,与y轴交于点C,直线yx+8经过A,C两点(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;如图2,过点O,P的直线ykx(k0)交AC于点E,若PE:OE5:6,求k的值2、在实施乡村振兴战略和移动互联快速进化的大背景下,某电商平台以10元/千克的价格收购一批农产品进行销售,经前期销售发现日销售量y(千克)与销售价格x(元/千克)之间满足一次函数关系,整理部分数据如下表:销售价格x(元/千克)1213141516日销售量y(千克)1000900800700600(1)求y关于x的函数表达式(2)为了稳定物价,有关管理部门规定这种农产品利润率不得高于50%,该平台应如何确定这批农产品的销售价格,才能使日销售利润w最大?(利润=售价成本,利润率=利润÷成本×100%)3、小明在画一个二次函数的图象时,列出了下面几组y与x的对应值x012y3430(1)求该二次函数的表达式;(2)该二次函数的图象与直线有两个交点A,B,若,直接写出n的取值范围4、已知抛物线(m为常数,且m0)(1)抛物线的对称轴为 (2)当此函数经过(3,3)时,求此函数的表达式,并直接写出函数值y随x的增大而增大时,x的取值范围(3)当1x2时,y有最小值3,求y的最大值(4)设直线x1分别与抛物线交于点M、与x轴交于N,当点M、N不重合时,过M作y轴的垂线与此函数图象的另一个交点为若,直接写出m的值5、如图1,在平面直角坐标系中,抛物线经过点,且与直线在第二象限交于点,过点作轴,垂足为点若是直线上方该抛物线上的一个动点,过点作轴于点,交于点,连接,(1)求抛物线的解析式;(2)求的面积的最大值;(3)连接交于点,如图2,线段与能否互相平分?若能,请求出点的坐标;若不能,请说明理由-参考答案-一、单选题1、D【分析】关于x的一元二次方程ax2+bx+c=0(a0)的根即为二次函数y=ax2+bx+c(a0)的图象与x轴的交点的横坐标【详解】解:根据图象知,抛物线y=ax2+bx+c(a0)与x轴的一个交点是(-3,0),对称轴是直线x=-1设该抛物线与x轴的另一个交点是(x,0)则=-1,解得,x=1,即该抛物线与x轴的另一个交点是(1,0)所以关于x的一元二次方程ax2+bx+c=0(a0)的根为x1=-3,x2=1故选:D【点睛】本题考查了抛物线与x轴的交点解题时,注意抛物线y=ax2+bx+c(a0)与关于x的一元二次方程ax2+bx+c=0(a0)间的转换2、A【分析】根据二次函数的二次项系数的符号即可判断开口方向【详解】解:二次函数,二次函数的图象开口向下故选A【点睛】本题考查了二次函数的图象的性质,掌握二次函数的图象开口向上,二次函数的图象开口向下是解题的关键3、B【分析】把该函数解析式化为顶点式,进而问题可求解【详解】解:由可知该函数的顶点坐标为,对称轴为直线t=2,由题意可知t的取值范围是0t2;故选B【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键4、D【分析】根据抛物线对称轴的计算公式判断【详解】抛物线y = a + bx + c的对称轴是x = - ,故选D【点睛】本题考查了抛物线的对称轴,熟练抛物线对称轴的计算公式是解题的关键5、B【分析】设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据每天的销售利润等于每件的利润乘以销售量,列出函数关系式,即可求解【详解】解:设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据题意得: , 当 时, 最大,即每件的定价为22元时,每天的销售利润最大故选:B【点睛】本题主要考查了二次函数的应用,明确题意,准确列出函数关系式是解题的关键6、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键7、C【分析】根据点A(1,y1),B(2,y2),C(m,y3)在抛物线(a 0)上,求出函数值,利用值之差得出,根据a 0可得得出,根据得出即可【详解】解:点A(1,y1),B(2,y2),C(m,y3)在抛物线(a 0)上,a 0,m可以取5,3,-5,m的值不可能是-3故选择C【点睛】本题考查抛物线上点的特征,函数值,自变量范围,掌握抛物线上点的特征,函数值,自变量范围是解题关键8、B【分析】由顶点坐标(m,-m+1),可得x=m,y=-m+1,即可证明顶点在直线y=-x+1上;根据二次函数的性质,当时,y随x的增大而增大,可知;由,根据已知可以判断,即可判断【详解】解:证明: 图象的顶点为(m,-m+1),设顶点坐标为(x,y),则x=m,y=-m+1,y=-x+1,即顶点始终在直线y=-x+1上, 正确;,对称轴,当时,y随x的增大而增大,时,y随x的增大而增大, 不正确; 与点 在函数图象上,x1x2,x1+x22m, 不正确故选:B【点睛】本题考查二次函数图像和性质,函数值大小比较等,解题的关键是掌握一元二次方程根与系数的关系及做差法比较大小9、D【分析】由抛物线开口向下,得到a小于0,再由对称轴在y轴左侧,得到a与b同号,可得出b0,又抛物线与y轴交于正半轴,得到c大于0,可判断选项A;由x=-1时,对应的函数值大于0,可判断选项B;由x=-2时对应的函数值小于0,可判断选项C;由对称轴大于-1,利用对称轴公式得到b2a,可判断选项D【详解】解:由抛物线的开口向下,得到a0,-0,b0,由抛物线与y轴交于正半轴,得到c0,abc0,故选项A错误;x=-1时,对应的函数值大于0,a-b+c0,故选项B错误;x=-2时对应的函数值小于0,4a-2b+c0,故选项C错误;对称轴大于-1,且小于0,0-1,即0b2a,故选项D正确,故选:D【点睛】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否10、C【分析】根据顶点式直接写出顶点坐标即可【详解】解:抛物线的顶点坐标是(,2),故选:C【点睛】本题考查了抛物线的顶点坐标,解题关键是明确二次函数顶点式的顶点坐标为二、填空题1、【分析】设,则,过点D作 PQEF交CE于Q,GF于P,证明四边形EQPF是矩形,得到EC=EF=PQ,即可推出,从而得到,由此利用二次函数的性质求解即可【详解】解:四边形ABCD是正方形,CDE=90°,设,则,过点D作 PQEF交CE于Q,GF于P,四边形CEFG是正方形,QEF=EFP=90°,EF=EC=FG,EQP=90°,四边形EQPF是矩形,EC=EF=PQ,当时,面积的最小值为,故答案为:【点睛】本题主要考查了正方形的性质,矩形的性质与判定,勾股定理,二次函数的应用,解题的关键在于能够熟练掌握相关知识进行求解2、(-5,0)【分析】先确定抛物线的对称轴,然后利用二次函数的对称性确定抛物线与x轴的另一个交点坐标【详解】解:抛物线的对称轴为直线,而抛物线与x轴的一个交点为(-1,0),所以抛物线与x轴的另一个交点为(-5,0)故答案为:(-5,0)【点睛】本题考查了抛物线与x轴的交点,解答本题的关键是求出抛物线图象的对称轴,利用对称知识进行解答,此题难度不大3、1【分析】先证明BCP=ACP,然后利用SAS证明BPCAQC得到B=CAQ,BP=AQ,从而推出PAQ =90°,再利用勾股定理求出,设BP=AQ=x,则,则,最后根据二次函数的性质求解即可【详解】解:如图,将线段CP绕点C顺时针旋转90°得到线段CQ,PCQ=90°,CP=CQ,ACP+ACQ=90°,又ACB=90°,BCP+ACP=90°,BCP=ACP,AC=BC,BPCAQC(SAS),B=CAQ,BP=AQ,BC=AC=2,B=CAQ=BAC=45°,PAQ=BAC+CAQ=90°,在RtABC中,由勾股定理AB=,设BP=AQ=x,则,函数开口向下,函数有最大值,当时,故答案为:1【点睛】本题考查了等腰直角三角形的性质、旋转的性质、勾股定理,全等三角形的性质与判定,二次函数的性质等知识点,掌握等腰直角三角形的性质、旋转的性质、勾股定理,二次函数的性质等知识点是解题关键4、【分析】根据二次函数的“左加右减,上加下减”的平移法则求解即可【详解】解:二次函数的图象向右平移1个单位长度,再向下平移2个单位长度,平移后的解析式为故答案为:【点睛】本题主要是考查了二次函数的图像平移,熟练掌握“左加右减,上加下减”的平移法则,是解决该题的关键5、【分析】先求出B点坐标,从而求出抛物线解析式,然后求出直线与抛物线的两个交点,利用两点距离公式即可求出答案【详解】解:B直线与y轴的交点,B点坐标为(0,3),B是抛物线的顶点,抛物线解析式为,解得或,直线与抛物线的两个交点坐标为(0,3),(1,2),抛物线关于直线y的割距是,故答案为:【点睛】本题主要考查了求一次函数与y轴交点,二次函数与一次函数的交点,两点距离公式,二次函数图像的性质,熟知相关知识是解题的关键三、解答题1、(1);(2);或k= - 10【分析】(1)由直线的解析式yx4易求点A和点C的坐标,把A和C的坐标分别代入yx2+bx+c求出b和c的值即可得到抛物线的解析式;(2)若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQAO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;过P点作PFOC交AC于点F,因为PFOC,所以PEFOEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点F(x,x8),利用(x2+bx+c)(x8),可求出x的值,解方程求出x的值可得点P的坐标,代入直线ykx即可求出k的值【详解】解:(1)直线yx8经过A,C两点,A点坐标是(8,0),点C坐标是(0,8),又抛物线过A,C两点,解得:,;(2)如图1,由(1)知,抛物线解析式是,抛物线的对称轴是直线x以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,PQAO,PQAO8P,Q都在抛物线上,P,Q关于直线x对称,P点的横坐标是,当x时,y,P点的坐标是(,);如图2,过P点作PFOC交AC于点F,PFOC,PEFOEC,又PE:OE5:6,OC8,PF,点F在AC上,设点F(x,x8),(x2-5x+8)(x8),化简得:(x4)2解得:x1,x2P点坐标是(,8)或(,)又点P在直线ykx上,把(,8)或(,)分别代入ykx中,k或k10【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,平行四边形的判定和性质,相似三角形的判定和性质,解一元二次方程,题目综合性较强,难度不大,是一道很好的中考题2、(1)y关于x的函数表达式为;(2)当销售价格为15元时,才能使日销售利润最大【分析】(1)设y关于x的函数表达式为,然后由表格任取两个数据代入求解即可;(2)由(1)及题意易得,然后根据“规定这种农产品利润率不得高于50%”及二次函数的性质可进行求解【详解】解:(1)设y关于x的函数表达式为,则把和代入得:,解得:,y关于x的函数表达式为;(2)由(1)及题意得:,-1000,开口向下,对称轴为直线,这种农产品利润率不得高于50%,解得:,当时,w随x的增大而增大,当时,w有最大值;答:当销售价格为15元时,才能使日销售利润最大【点睛】本题主要考查二次函数与一次函数的应用,解题的关键是得到销售量与销售价格的函数关系式3、(1)y=-(x+1)2+4;(2)n<-5【分析】(1)利用表中数据和抛物线的对称性得到抛物线的对称轴为直线x=-1,顶点坐标为(-1,4),则可设顶点式y=a(x+1)2+4,然后把(1,0)代入求出a即可;(2)根据抛物线与一次函数有公共点,联系根的判别式求解即可【详解】解:(1)抛物线经过点(-2,3),(0,3),(-1,4),抛物线的对称轴为直线x=-1,顶点坐标为(-1,4),设抛物线解析式为y=a(x+1)2+4,把(1,0)代入得a(1+1)2+4=0,解得a=-1,抛物线解析式为y=-(x+1)2+4;(2)二次函数的图象与直线有两个交点,-(x+1)2+4=n,即,=,解得n<4,n的取值范围为n<4,AB=,>6,解得n<-5,综上n的取值范围为n<-5【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质4、(1)直线x=1;(2),x1;(3)17或;(4)【分析】(1)根据抛物线的对称轴公式求解即可;(2)先把点(3,3)代入抛物线的解析式求出m,再根据二次函数的性质解答即可;(3)分m0与m0两种情况,根据抛物线的性质求解即可;(4)分m>0与m<0两种情况,结合二次函数的图象与,求解即可;【详解】解:(1)抛物线的对称轴是直线:,故答案为:直线x=1;(2)当此函数经过(3,3)时,解得,此函数的表达式为,抛物线的开口向上,当x1时,函数值y随x的增大而增大;(3)当m0时,抛物线开口向上,1x2,当x=1时,y有最小值3,m-2m+2=-3,解得m=5,此时抛物线的解析式是,则当x=-1时,y有最大值为5+10+2=17;当m<0时,抛物线开口向下,1x2,当x=-1时,y有最小值3,m+2m+2=-3,解得m=,此时抛物线的解析式是,则当x=1时,y有最大值为;综上,y的最大值为17或;(4)当m>0时,则M(-1,3m+2),N(-1,0),M(3,3m+2),MM=4,MN=3m+2,若,则4=3(3m+2),解得(不合题意,舍去);当m<0时,如图,MM=4,MN=-3m-2,若,则4=-3(3m+2),解得;综上,若,则【点睛】本题是二次函数的综合题,主要考查了二次函数的图象和性质以及二次函数图象上点的坐标特征,熟练掌握二次函数的图形与性质、灵活应用数形结合思想和分类思想是解题的关键5、(1);(2)8;(3)能,点的坐标为或【分析】(1)先利用求解的坐标,再利用待定系数法求解抛物线的解析式即可;(2)设点,则点,再求解 列二次函数关系式,利用二次函数的性质求解面积的最大值即可.(3)如图,连接,由线段与相互平分,可得四边形是平行四边形,则有,再列方程,解方程可得答案.【详解】解:(1) 轴,点, ,又抛物线经过, 解得: 抛物线的解析式为 (2)设点,则点, ,时,; (3)线段与能相互平分理由如下:如图,连接线段与相互平分,四边形是平行四边形, ,或当时,则 为的中点,点的坐标为当时, 则 为的中点,点的坐标为点的坐标为或【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,二次函数与平行四边形,掌握“列面积的二次函数关系式,利用对角线互相平分得到平行四边形,再利用平行四边形的对边相等列方程”是解本题的关键.