2022中考特训浙教版初中数学七年级下册第五章分式专题测评练习题(无超纲).docx
-
资源ID:32521419
资源大小:221.12KB
全文页数:14页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022中考特训浙教版初中数学七年级下册第五章分式专题测评练习题(无超纲).docx
初中数学七年级下册第五章分式专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、己知关于x的分式的解为非负数,则a的范围为( )A且B且C且D且2、计算: ( )A3B3CD3、若a0.52,b52,c(5)0,那么a、b、c三数的大小为()AacbBcabCabcDcba4、蚕丝线的截面面积0.000000785平方厘米,此面积数字可用科学记数法表示为()A7.85×106B7.85×106C7.85×107D7.85×1075、用科学记数法表示数0.0000104为( )ABCD6、新型冠状病毒属冠状病毒属,冠状病毒科,体积很小,最大直径不超过140纳米(即0.00000014米)用科学记数法表示0.00000014,正确的是()A1.4×107B1.4×107C0.14×106D14×1087、冠状病毒的一个变种是非典型肺炎的病原体,某种球形冠状病毒的直径是120纳米,1纳米109米,则这种冠状病毒的半径用科学记数法表示为()A1.2×107米B1.2×1011米C0.6×1011米D6×108米8、下列说法正确的是( )A没有意义B任何数的0次幂都等于1CD若,则9、代数式的家中来了几位客人:、,其中属于分式家族成员的有( )A1个B2个C3个D4个10、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD二、填空题(5小题,每小题4分,共计20分)1、水珠不断滴在一块石头上,经过若干年,石头上形成了一个深为的小洞,则数字0.000048用科学记数法可表示_2、某种苔藓植物的孢子的直径约为18微米,将“18微米”用科学记数法表示为“米”,其中的值为_(1米=1000000微米)3、如图,一个长宽高分别为,的长方体纸箱装满了一层高为的圆柱形易拉罐,则纸箱空间的利用率=_(易拉罐总体积与纸箱容积的比,结果精确到0.1%)4、若,则_5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、某校为了准备“迎新活动”,用900元购买了甲、乙两种礼品共240个,其中购买甲种礼品比乙种礼品少用了180元(1)购买甲种礼品一共用去_元;(请直接写出答案)(2)如果甲种礼品的单价是乙种礼品单价的2倍,那么乙种礼品的单价是多少元?2、先化简,再求值:,其中a13、计算:4、计算:(1)(2)5、化简:-参考答案-一、单选题1、A【分析】先求出分式方程的解,然后根据分式方程的解是非负数以及分式有意义的条件求解即可.【详解】解:,分式方程的解为非负数且分式方程要有意义,解得且,故选A.【点睛】本题主要考查了解分式方程以及分式方程有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.2、C【分析】利用负整数指数幂:(a0,p为正整数),进而得出答案【详解】解:;故选:C【点睛】此题主要考查了负整数指数幂,正确掌握负整数指数幂的性质是解题关键3、B【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案【详解】a0.520.25,b52,c(5)01,cab故选:B【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键4、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000785=7.85×10-7故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000104=1.04×10-5,故选:B【点睛】本题考查科学记数法,解答本题的关键是明确科学记数法的方法6、B【分析】根据题意,运用科学计数法的表示方法可直接得出答案,要注意绝对值小于1的数字科学计数法的表示形式为:,其中,n为正整数,n的值由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000014用科学记数法表示为,故选:B【点睛】本题考查了科学计数法的表示方法,属于基础题,正确确定中和的值是解决本题的关键7、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:120÷2(纳米)60×109米6×108米故选:D【点睛】考核知识点:科学记数法理解科学记数法的规则是关键8、D【分析】根据除0之外的任何数的零次幂都等于1即可判定A、B、D,根据幂的混合运算法则即可判断C【详解】解:A、,有意义,故此选项不符合题意;B、除0外的任何数的0次幂都等于1,故此选项不符合题意;C、,故此选项不符合题意;D、若,则,故此选项符合题意;故选D【点睛】本题主要考查了幂的运算,零指数幂,解题的关键在于能够熟练掌握相关计算法则9、C【分析】根据分式的定义:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,其中A称为分子,B称为分母,据此判断即可【详解】解:属于分式的有:、,故选:C【点睛】本题考查了分式的定义,熟知定义是解本题的关键10、B【分析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值二、填空题1、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000048=4.8×10-5故答案为:4.8×10-5【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、-5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:18微米=0.000018米=1.8×10-5米,n=-5,故答案为:-5【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、【分析】根据题意分别算出纸箱的体积和易拉罐的体积,根据易拉罐总体积与纸箱容积的比求得利用率【详解】设沿长边摆放了个易拉罐,沿宽摆放了个易拉罐,则,每个易拉罐的体积=,所以长方体纸箱中圆柱形易拉罐所占的总体积,又因为长方体纸盒的体积= ,所以纸箱空间的利用率为故答案为:【点睛】本题考查了分式的应用,掌握分式的计算是解题的关键4、【分析】由,得x+y=2,整体代入所求的式子化简即可【详解】由,得x+y=2xy,则=【点睛】本题考查了分式的基本性质,解题的关键是用到了整体代入的思想5、-1【分析】根据得出,然后根据分式的性质代入即可求解【详解】解:由题意可知,故答案为:-1【点睛】此题考查了绝对值的性质,分式的性质,解题的关键是熟练掌握绝对值的性质,分式的性质三、解答题1、(1)360;(2)3元【分析】(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,然后根据一共花了900元,列出方程求解即可;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,然后根据用900元购买了甲、乙两种礼品共240个,列出方程求解即可【详解】解:(1)购买甲种礼品一共用去x元,则购买乙种礼品一共用去(180+x)元,由题意得:x+180+x=900,解得:x=360,购买甲种礼品一共用去360元,故答案为360;(2)设乙种礼品单价是y元,则甲种礼品单价是2y元,由题意得:,解得:y3,经检验,y3是原方程的根,并符合题意,答:乙种礼品的单价是3元【点睛】本题主要考查了一元一次方程的应用,分式方程的应用,解题的关键在于能够准确理解题意,列出方程求解2、,【分析】先计算括号内的异分母分式减法,再计算除法,最后将a=-代入计算即可【详解】解:,当时,原式【点睛】此题考查分式的化简求值,正确掌握分式的混合运算是解题的关键3、【分析】根据分式的混合运算法则先将分式的分子和分母因式分解,然后先算乘除,后算加减求解即可【详解】解:原式【点睛】本题考查的是分式混合运算,熟知分式混合运算的法则是解答此题的关键4、(1);(2)【分析】(1)直接利用度分秒换算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则计算得出答案【详解】解:(1)原式(2)原式【点睛】此题主要考查了同底数幂的乘除运算、度分秒换算,正确掌握相关运算法则是解题关键5、【分析】先计算括号内的分式的加减运算,再计算分式的乘法运算,约分后可得答案.【详解】解:原式【点睛】本题考查的是分式的混合运算,掌握“异分母分式的加减运算法则:先通分化为同分母分式,再按照分母不变,把分子相加减”是解题的关键.