2022年人教版八年级数学下册第十九章-一次函数专题测试试题(含详细解析).docx
人教版八年级数学下册第十九章-一次函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于变量x,y的关系,其中y不是x的函数的是()ABCD2、如图,在平面直角坐标系中,线段AB的端点为A(2,1),B(1,2),若直线ykx1与线段AB有交点,则k的值不能是()A-2B2C4D43、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()Ay=2x+3By=x3Cy=x+3Dy=3x4、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是()ABCD5、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系则下列说法错误的是()A乙摩托车的速度较快B经过0.3小时甲摩托车行驶到A,B两地的中点C当乙摩托车到达A地时,甲摩托车距离A地kmD经过0.25小时两摩托车相遇6、已知4个正比例函数yk1x,yk2x,yk3x,yk4x的图象如图,则下列结论成立的是()Ak1k2k3k4Bk1k2k4k3Ck2k1k3k4Dk4k3k2k17、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的对应点在直线上,则点与其对应点之间的距离为( )A4B6C8D108、已知点A(2,4)沿水平方向向左平移3个单位长度得到点A',若点A'在直线yx+b上,则b的值为()A1B3C5D19、如图,一次函数ykx+b(k0)的图像经过点A(1,2)和点B(2,0),一次函数y2x的图像过点A,则不等式2xkx+b0的解集为( )Ax2B2x1C2x1D1x010、已知一次函数y(12m)x3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )AmBmCmDm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数,且y的值随着x的值增大而减小,则m的取值范围是_2、函数的定义域是 _3、十一月的中山公园菊花盛开,甲乙两人约定去中山公园游玩,甲开汽车,乙骑摩托车分别从A、B两地同时沿同一路线去中山公园,他们距离A地的路程y(km)随时间x(h)变化的图象如图所示,已知甲开汽车离A地的路程y(km)与行驶时间x(h)满足y50x,甲乙行驶_h,两人第一次相遇4、若y关于x的函数y7x2m是正比例函数,则m_5、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_;三、解答题(5小题,每小题10分,共计50分)1、我们知道,海拔高度每上升1千米,温度下降6 某时刻,连云港地面温度为20 ,设高出地面x千米处的温度为y (1)写出y与x之间的函数关系式(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为34 ,求飞机离地面的高度为多少千米?2、在平面直角坐标系中,直线ykx+4(k0)交x轴于点A(8,0),交y轴于点B(1)k的值是 ;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标3、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示根据图象解答下列问题(1)甲、乙两地之间的距离为_km,线段AB的解析式为_两车在慢车出发_小时后相遇;(2)设慢车行驶时间x(0x6,单位:h),快、慢车之间的距离为S(km)当两车之间距离S300km时,求x的值;图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据)4、如图,在平面直角坐标系中,直线l1的解析式为yx,直线l2的解析式为y12x3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C(1)求点A、点B、点C的坐标,并求出COB的面积;(2)若直线l2上存在点P(不与B重合),满足SCOPSCOB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由5、已知一次函数y=2x+4求:(1)求图象与x轴、y轴的交点A、B的坐标 (2)画出函数的图象(3)求AOB的面积-参考答案-一、单选题1、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键2、B【解析】【分析】当直线y=kx1过点A时,求出k的值,当直线y=kx1过点B时,求出k的值,介于二者之间的值即为使直线y=kx1与线段AB有交点的x的值【详解】解:当直线y=kx1过点A时,将A(2,1)代入解析式y=kx1得,k=1,当直线y=kx1过点B时,将B(1,2)代入解析式y=kx1得,k=3,|k|越大,它的图象离y轴越近,当k3或k-1时,直线y=kx1与线段AB有交点故选:B【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线3、D【解析】【分析】先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式【详解】解:由图可知:A(0,3),xB=1点B在直线y=2x上,yB=2×1=2,点B的坐标为(1,2),设直线AB的解析式为y=kx+b,则有:,解得:,直线AB的解析式为y=-x+3;故选:D【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键4、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0x、x、x2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解【详解】解:当两车相遇时,所用时间为120÷(60+90)=小时, B车到达甲地时间为120÷90=小时,A车到达乙地时间为120÷60=2小时,当0x时,y=120-60x-90x=-150x+120;当x时,y=60(x-)+90(x-)=150x-120;当x2是,y=60x;由函数解析式的当x=时,y=150×-120=80故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键5、D【解析】【分析】由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题【详解】解:由图可得,甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;甲的速度为:20÷0.6(km/h),则甲行驶0.3h时的路程为:×0.310(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;当乙摩托车到达A地时,甲摩托车距离A地:×0.5(km),故选项C正确;乙的速度为:20÷0.540(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;故选:D【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答6、A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小【详解】解:首先根据直线经过的象限,知:k30,k40,k10,k20,再根据直线越陡,|k|越大,知:|k1|k2|,|k4|k3|则k1k2k3k4,故选:A【点睛】本题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小7、D【解析】【分析】先根据平移的特点可知所求的距离为,且,点纵坐标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的纵坐标为6,令,代入直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的性质是解题关键8、C【解析】【分析】由平移性质求得点A'的坐标,再将A'代入直线解析式中求解即可【详解】解:由平移性质得:点A(2,4)沿水平方向向左平移3个单位长度得到点A'的坐标为(1,4),点A'在直线yx+b上,4=1+b,b=5,故选:C【点睛】本题考查坐标与图形变换-平移、一次函数图象上点的坐标特征,熟练掌握平移规律是解答的关键9、B【解析】【分析】根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2xkx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b0的解集是x-2,即可得出答案【详解】解:由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),不等式2xkx+b的解集是x-1,一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),不等式kx+b0的解集是x-2,不等式2xkx+b0的解集是-2x-1,故选:B【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键10、C【解析】【分析】利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围【详解】解:函数值y随自变量x的增大而减小,那么1+2m0,解得m故选:C【点睛】本题主要是考查了一次函数的值与函数增减性的关系,一次函数为减函数,一次函数为增函数,掌握两者之间的关系,是解决该题的关键二、填空题1、m【解析】【分析】利用一次函数的性质可得出关于m的一元一次不等式,解之即可得出m的取值h$范围【详解】解:一次函数的y值随着x值的增大而减小,3m+10,m故答案为:m【点睛】本题考查了一次函数的性质,牢记“k0,y随x的增大而增大;k0,y随x的增大而减小”是解题的关键2、x0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可【详解】解:函数的定义域是:x0故答案为:x0【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负3、#0.5【解析】【分析】设乙开离A地的路程y(km)与行驶时间x(h)满足ykx+b,由图象知,乙的解析式过(0,10)和(3,100)两点,用待定系数法求出解析式,联立两解析式即可得出相遇时间【详解】解:设乙开离A地的路程y(km)与行驶时间x(h)满足ykx+b,由图象知,此解析式过(0,10)和(3,100)两点,解得,乙开离A地的路程y(km)与行驶时间x(h)的解析式为y30x+10,两人第一次相遇时50x30x+10,解得x,甲乙行驶h,两人第一次相遇,故答案为:【点睛】本题主要考查一次函数的应用,熟练掌握一次函数的性质及待定系数法求函数解析式是解题的关键4、2【解析】【分析】根据正比例函数的定义得到2m0,然后解方程得m的值【详解】解:y关于x的函数y7x2m是正比例函数,2m0,解得m2故答案为2【点睛】本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键形如是正比例函数5、V=100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可【详解】解:V与h的关系为V=100h;故答案为:V=100h【点睛】本题主要考查了列函数关系式,题目比较简单三、解答题1、(1)y=20-6x;(2)16.4;(3)9千米【解析】【分析】(1)结合题意列关系式,即可得到答案;(2)结合(1)的结论,根据一次函数的性质计算,即可得到答案;(3)结合(1)的结论,通过求解一元一次方程,即可得到答案【详解】(1)根据题意,得:y=20-6x;(2)结合(1)的结论,得山顶的温度大约是:20-0.6×6=20-3.6=16.4;(3)结合(1)的结论,得:20-6x=-34x=9飞机离地面的高度为9千米【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解2、(1)-12;(2)C(3,52);C(2,3)或C(-23,133).【解析】【分析】(1)把A(8,0)的坐标代入函数解析式即可;(2)由四边形OECD,则C在线段AB上时,如图,利用四边形OECD的面积是9,再列方程解题即可;分三种情况讨论,如图,当C在线段AB上时, 当C在AB的延长线上时,当C在BA的延长线时,设C(x,-12x+4),再利用四边形OECD的周长是10,列方程求解即可.【详解】解:(1) 直线ykx+4(k0)交x轴于点A(8,0),8k+4=0, 解得:k=-12, 故答案为:-12 (2)由(1)得:y=-12x+4, 令x=0, 则y=4, 即B(0,4), SAOB=12×4×8=16, 点D的坐标为(6,0),点E的坐标为(0,1),OE=1,BE=3,AD=8-6=2, 设C(x,-12x+4), 由四边形OECD的面积是9,则C在线段AB上, 16-12×3x-12×2×(-12x+4)=9, 解得:x=3, 则-12x+4=-32+4=52, C(3,52). 当CE平行于x轴,CD平行于y轴时,CEy轴,CDx轴,CE=OD,CD=OE, 如图,当C在线段AB上时,设C(x,-12x+4),则OD=x,CD=-12x+4, 四边形OECD的周长是10,2(-12x+4+x)=10, 解得:x=2, 则-12x+4=3, C(2,3), 当C在AB的延长线上时,同理可得:CD=-12x+4,OD=-x, 2(-12x+4-x)=10, 解得:x=-23, 则-12x+4=133, C(-23,133), 当C在BA的延长线时,如图,四边形OECD的周长大于2OA=16,故不符合题意,舍去,综上:C(2,3)或C(-23,133).【点睛】本题考查的是一次函数的性质,坐标与图形,掌握“利用周长与面积列方程”是解本题的关键.3、(1)450;y1150x+450,2;(2)23或4;见解析【解析】【分析】(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;(2)根据题意得出函数解析式为S450-225x(0x<2)225x-450(2x<3)75x(3x6),把S300代入解析式分别求出x的值即可;根据题意得出函数解析式,画出函数的图象即可【详解】解:(1)由图象可得:甲、乙两地之间的距离为450km;设线段AB的解析式为y1k1x+b1,A(0,450),B(3,0),b1=4503k1+b1=0,解得:k1=-150b1=450,线段AB的解析式为y1450150x(0x3);设两车在慢车出发x小时后相遇,(4503+4506)x=450,解得:x2,答:两车在慢车出发2小时后相遇故答案为:450;y1150x+450;2;(2)4503+4506=225,根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S450-225x(0x<2)225x-450(2x<3)75x(3x6),当0x<2时,S=450-225x=300,解得:x23,当2x<3时,S=225x-450=300,解得:x=103(舍去),当3x6时,S=75x=300,解得:x=4,综上所述:x的值为23或4其图象为折线图如下:【点睛】本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键4、(1)点A、B的坐标分别为(6,0),(0,3),点C(2,2);COB的面积3;(2)P(4,1);(3)点Q的坐标为(0,127)或(0,125)或(0,65)【解析】【分析】(1)点A、B的坐标分别为(6,0)、(0,3),联立式yx,y12x+3得:点C(2,2);COB的面积12×OB×xC,即可求解;(2)设点P(m,12m+3),SCOPSCOB,则BCPC,则(m2)2+(12m+32)222+125,即可求解;(3)分MQN90°、QNM90°、NMQ90°三种情况,分别求解即可【详解】解:(1)直线l2的解析式为y12x3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式yx,y12x3并解得:x2,故点C(2,2);COB的面积12×OB×xC12×3×23;(2)设点P(m,12m3),SCOPSCOB,则BCPC,则(m2)2(12m32)222125,解得:m4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,312m)、(0,n),当MQN90°时,GNQGQN90°,GQNHQM90°,MQHGNQ,NGQQHM90°,QMQN,NGQQHM(AAS),GNQH,GQHM,即:m312mn,nmm,解得:m67,n127;当QNM90°时,则MNQN,即:312mmm,解得:m65,nyN312×65=125;当NMQ90°时,同理可得:n65;综上,点Q的坐标为(0,127)或(0,125)或(0,65)【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键5、(1)A(2,0)B(0,4);(2)见解析;(3)SAOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解【详解】解:(1)让y=0时,0=2x+4解得:x=2;让x=0时,y=-2×0+4=4,一次函数y=2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)SAOB=12×AO×BO=12×2×4=4【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标