2022年人教版初中数学七年级下册-第六章实数章节练习.docx
-
资源ID:32522092
资源大小:208.26KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版初中数学七年级下册-第六章实数章节练习.docx
初中数学七年级下册 第六章实数章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列各数:3.14,0,2,-2,0.1010010001(1之间的0逐次增加1个),其中无理数有()A1个B2个C3个D4个2、下列各数是无理数的是()ABCD3、下列判断:10的平方根是±;与互为相反数;0.1的算术平方根是0.01;()3a;±a2其中正确的有()A1个B2个C3个D4个4、下列运算正确的是()ABCD5、下列各数中,不是无理数的是()ABC0.1010010001D3.146、如图,数轴上的点A,B,O,C,D分别表示数,0,1,2,则表示数的点P应落在( )A线段AB上B线段BO上C线段OC上D线段CD上7、平方根和立方根都等于它本身的数是( )A±1B1C0D18、若,那么( )A1B-1C-3D-59、在0.1010010001(相邻两个1之间依次多一个0),中,无理数有( )A1个B2个C3个D4个10、在0,3,6.1010010001(相邻两个1之间0的个数在递增)中,无理数有()A1个B2个C3个D4个二、填空题(5小题,每小题4分,共计20分)1、的算术平方根是_,的平方根是_,8的立方根是_,2、一个正方形的面积为5,则它的边长为_3、绝对值不大于4且不小于的整数分别有_4、若的平方根是±4,则a_5、若一个正数的平方根是3x+2和5x-10,则这个数是_三、解答题(5小题,每小题10分,共计50分)1、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为43,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由2、求下列各式中的值:3、求下列各式中x的值:(1); (2)4、已知(x-1)2+|y+3|+=0,求x+y2-z的立方根5、计算:-参考答案-一、单选题1、C【分析】根据无理数的定义求解即可【详解】解:在所列实数中,无理数有:,2,0.1010010001(1之间的0逐次增加1个),共3个,故选:C【点睛】本题考查了无理数的定义,注意常见的无理数有:开方开不尽的数,含的数,有规律但不循环的数2、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:A,是整数,属于有理数,故本选项不合题意;B,是整数,属于有理数,故本选项不合题意;C是无理数,故本选项符合题意;D是分数,属于有理数,故本选项不合题意;故选:C【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数3、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是±,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根4、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可【详解】A、,故A错误;B、,故B正确;C,故C错误;D|-2|-2,故D错误故选:B【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键5、B【分析】分别根据无理数、有理数的定义即可判定选择项【详解】解:A、是无理数,故本选项不合题意;B、是分数,属于有理数,故本选项符合题意;C、0.1010010001是无理数,故本选项不合题意;D、3.14是无理数,故本选项不合题意;故选:B【点睛】本体考察的是无理数的定义,无限不循环小数叫做无理数,常遇到的无理数有三类:开方开不尽的数的方根,如,等;特定结构的数,如0.3030030003;特定意义的数,如6、B【分析】根据,得到,根据数轴与实数的关系解答【详解】解:,表示的点在线段BO上,故选:B【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键7、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;平方根和立方根都是本身的数是0故选C【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根8、D【分析】由非负数之和为,可得且,解方程求得,代入问题得解【详解】解: , 且,解得,故选:D【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键9、B【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:0.1010010001(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;是有理数;是有理数;是无理数;无理数有2个,故选B【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义10、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:在0,6.1010010001(相邻两个1之间一次多一个0)中,无理数有,+6.1010010001(相邻两个1之间一次多一个0)故选C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数二、填空题1、 5 ±3 -2【解析】【分析】根据算术平方根、平方根、立方根的定义即可求解【详解】解:=25算术平方根是5=9,的平方根是±38的立方根是-2故答案为:5;±3;-2【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根2、【解析】【分析】根据正方形面积根式求出边长,即可得出答案【详解】解:边长为: 故答案为【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根3、4和-4或-4和4【解析】【分析】根据绝对值的意义及实数的大小比较可直接进行求解【详解】解:由绝对值不大于4且不小于的整数分别有4和;故答案为4和【点睛】本题主要考查绝对值的意义及实数的大小比较,熟练掌握绝对值的意义及实数的大小比较是解题的关键4、256【解析】【分析】根据平方根与算术平方根的定义即可求解【详解】解:的平方根是±4,故答案为:256【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果,那么就叫做b的平方根,如果对于两个正数有,则a是b的算术平方根5、25【解析】【分析】根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数【详解】解:根据题意得:,解得:,即,则这个数为25,故答案为:25【点睛】本题考查了平方根,熟练掌握平方根的定义是解本题的关键三、解答题1、能,桌面长宽分别为28cm和21cm【解析】【分析】本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可【详解】能做到,理由如下:设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=58812x2=588(cm)3x=3×7=21(cm)面积为900cm2的正方形木板的边长为30cm,28cm<30cm,能够裁出一个长方形面积为588cm2并且长宽之比为43的桌面,答:桌面长宽分别为28cm和21cm【点睛】本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点2、(1)x=4;(2)【解析】【分析】(1)根据立方根的定义解答;(2)根据平方根定义解答【详解】解:(1)x+2=6,x=4;(2)【点睛】此题考查了利用立方根定义及平方根定义解方程,正确求一个数的立方根及平方根是解题的关键3、(1);(2)【解析】【分析】(1)根据平方根的定义求解;(2)根据立方根的定义求解【详解】解:(1)原方程可变形为:,;(2)原方程可变形为:=8,x+1=2,x=1【点睛】本题考查了平方根,立方根,注意一个正数的平方根有2个,不要漏解4、2【解析】【分析】先根据偶次方的非负性、绝对值的非负性、算术平方根的非负性可求出的值,再代入计算的值,然后根据立方根的定义即可得【详解】解:,解得,将代入得:,解得,则,所以的立方根是2【点睛】本题考查了算术平方根与立方根、绝对值、一元一次方程的应用等知识点,熟练掌握偶次方的非负性、绝对值的非负性和算术平方根的非负性是解题关键5、【解析】【分析】根据立方根,算术平方根,绝对值的计算法则求解即可【详解】解:【点睛】本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键