2022年人教版初中数学七年级下册-第六章实数专题训练试卷(精选).docx
-
资源ID:32523218
资源大小:268.26KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版初中数学七年级下册-第六章实数专题训练试卷(精选).docx
初中数学七年级下册 第六章实数专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是( )ABCD2、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )AB2CD3、下列各数是无理数的是( )AB3.33CD4、在0,3,6.1010010001(相邻两个1之间0的个数在递增)中,无理数有()A1个B2个C3个D4个5、下列命题是假命题的是( )A无理数都是无限小数B的立方根是它本身C三角形内角和都是180°D内错角相等6、下列说法正确的是( )A的相反数是B2是4的平方根C是无理数D7、在1.414,2+,3.212212221,3.14这些数中,无理数的个数为( )A5B2C3D48、64的立方根为( )A2B4C8D29、下列判断:10的平方根是±;与互为相反数;0.1的算术平方根是0.01;()3a;±a2其中正确的有()A1个B2个C3个D4个10、若,则整数a的值不可能为( )A2B3C4D5二、填空题(5小题,每小题4分,共计20分)1、若2,则x_2、下列各数中, , ,-,是有理数的有_;是无理数的有_3、已知x2=36,那么x=_;如果(-a)2=(7)2,那么a=_4、实数16的平方根是_,=_,5的立方根记作_5、x,y都是实数,且|x3|0,那么_三、解答题(5小题,每小题10分,共计50分)1、计算:2、直接写出结果:(1)_;(2)_;(3)的立方根_;(4)若x2(7)2,则x_3、求下列各式中x的值(1)(x3)34(2)9(x2)2164、已知正数a的两个不同平方根分别是2x2和63x,a4b的算术平方根是4(1)求这个正数a以及b的值;(2)求b2+3a8的立方根5、已知一个正数的平方根是a6和2a9(1)求a的值;(2)求关于x的方程ax2160的解-参考答案-一、单选题1、B【分析】根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可【详解】解:A、,计算错误,不符合题意;B、,计算正确,符合题意;C、,计算错误,不符合题意;D、,计算错误,不符合题意;故选B【点睛】本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键2、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,即故选:C【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根3、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键4、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:在0,6.1010010001(相邻两个1之间一次多一个0)中,无理数有,+6.1010010001(相邻两个1之间一次多一个0)故选C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数5、D【分析】根据无理数的定义、立方根、三角形内角和定理、平行线的性质,分别进行判断,即可得到答案【详解】解:A、无理数都是无限小数;原命题是真命题,故不符合题意;B、的立方根是它本身;原命题是真命题,故不符合题意;C、三角形内角和都是180°;原命题是真命题,故不符合题意;D、两直线平行,内错角相等;原命题是假命题,故符合题意;故选:D【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理6、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案【详解】解:A 负数没有平方根,故无意义,A错误;B,故2是4的平方根,B正确;C是有理数,故C错误;D ,故D错误; 故选B【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义7、D【分析】根据无理数的定义:“无限不循环的小数是无理数”,逐个分析判断即可【详解】解:在1.414,2+,3.212212221,3.14这些数中,1.414,是有理数,2+,3.212212221是无理数,共4个故选D【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数8、B【分析】根据立方根的定义进行计算即可【详解】解:43=64,实数64的立方根是,故选:B【点睛】本题考查立方根,理解立方根的定义是正确解答的关键9、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是±,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根10、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可【详解】解:,即,即,又,整数a可能的值为:2,3,4,整数a的值不可能为5,故选:D【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法二、填空题1、8【解析】【分析】根据立方根的性值计算即可;【详解】2,;故答案是8【点睛】本题主要考查了立方根的性质,准确分析计算是解题的关键2、 、 、 、-【解析】【分析】根据有理数和无理数的概念求解即可有理数包括整数和分数,无理数是无限不循环小数【详解】解:,有理数为:、 、;无理数为:、-故答案为:、 、;、-【点睛】此题考查了有理数和无理数的概念,解题的关键是熟练掌握有理数和无理数的概念有理数包括整数和分数,无理数是无限不循环小数3、 ±6#6或-6 ±7#7或-7【解析】【分析】根据平方根的定义求解即可【详解】解:(±6)2=36,当x2=36时,则x=±6;(-a)2=(7)2,a2=49,(±7)2=49,a=±7;故答案为:±6;±7【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根4、 【解析】【分析】分别根据平方根、算术平方根、立方根的定义依次可求解【详解】解:实数16的平方根是,=,5的立方根记作故答案为:,【点睛】本题主要考查了立方根、平方根、算术平方根的定义用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个5、1【解析】【分析】根据绝对值的非负性和算术平方根的非负性求得的值,进而求得的值【详解】解:|x3|0,解得故答案为:【点睛】本题考查了绝对值的非负性和算术平方根的非负性,求得的值是解题的关键三、解答题1、2【解析】【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算【详解】解:3()+(1)3+12【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.2、(1)8;(2)0;(3)2;(4)【解析】【分析】(1)根据算术平方根的计算法则求解即可;(2)根据算术平方根的计算法则求解即可;(3)根据立方根的求解方法求解即可;(4)根据求平方根的方法解方程即可【详解】解:(1),故答案为:8;(2),故答案为:0;(3),的立方根是2,故答案为:2;(4)x2(7)2,x249,x=±7故答案为:±7【点睛】本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键3、(1)x=5;(2)x=-或x=【解析】【分析】(1)把x-3可做一个整体求出其立方根,进而求出x的值;(2)把x+2可做一个整体求出其平方根,进而求出x的值【详解】解:(1) (x3)34,(x-3)3=8,x-3=2,x=5;(2)9(x+2)2=16,(x+2)2=,x+2=,x=-或x=【点睛】本题考查了立方根和平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根4、(1),;(2)b2+3a8的立方根是5【解析】【分析】(1)根据题意可得,2x2+63x0,即可求出a36,再根据a4b的算术平方根是4,求出b的值即可;(2)将(1)中所求a、b的值代入代数式b2+3a8求值,再根据立方根定义计算即可求解【详解】解:(1)正数a的两个不同平方根分别是2x2和63x,2x2+63x0,x4,2x26,a36,a4b的算术平方根是4,a4b16,36-4b=16b5;(2)当a=36,b=5时,b2+3a825+36×38125,b2+3a8的立方根是5【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键5、(1);(2)或【解析】【分析】(1)根据一个正数有两个平方根,这两个平方根互为相反数解答;(2)根据平方根的定义求解方程即可【详解】解:(1)一个正数的平方根是和,;(2)当,方程为,关于x的方程的解是或【点睛】本题考查的是平方根的概念,掌握一个正数有两个平方根,且两个平方根互为相反数是解题的关键.