2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项训练试题(无超纲).docx
-
资源ID:32524948
资源大小:1,017.20KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练京改版九年级数学下册第二十三章-图形的变换专项训练试题(无超纲).docx
九年级数学下册第二十三章 图形的变换专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC90°,AB6,BC8把ABC绕点A逆时针方向旋转到AB'C',点B'恰好落在AC边上,则CC'()A10B2C2D42、下列图形既是轴对称图形又是中心对称图形的是()ABCD3、如图,在中,点D为边AB的中点,点P在边AC上,则周长的最小值等于( )ABCD4、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,-3)B(4,3)C(4,-3)D(-4,3)5、如图,在RtABC中,ACB90°,将RtABC绕顶点C逆时针旋转得到RtA'B'C,M是BC的中点,P是AB'的中点,连接PM若BC2,BAC30°,则线段PM的最大值为()A2.5B2+C3D46、下列图形中,既是轴对称图形又是中心对称图形的是( ) A等边三角形B平行四边形C正五边形D正六边形7、已知点M(2,3),点N与点M关于x轴对称,则点N的坐标是()A(2,3)B(2,3)C(3,2)D(2,3)8、下列图形中,是中心对称图形的是( )ABCD9、下列图形中,不是位似图形的是( )ABCD10、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90°得到点D的坐标为( )A(2,1)或(2,1)B(2,5)或(2,3)C(2,5)或(2,3)D(2,5)或(2,5)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90°,BAC30°,BC6,将ABC绕点C顺时针旋转30°得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _2、若点M(,a)关于y轴的对称点是点N(b,),则=_3、如图,将绕点顺时针旋转得到,点的对应点恰好落在边上,则_(用含的式子表示)4、如图,在平面直角坐标系中,有一个,ABO90°,AOB30°,直角边OB在y轴正半轴上,点A在第一象限,且OA1,将绕原点逆时针旋转30°,同时把各边长扩大为原来的两倍(即OA12OA)得到,同理,将绕原点O逆时针旋转30°,同时把各边长扩大为原来的两倍,得到,依此规律,得到,则的长度为_5、点关于原点对称的点的坐标为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称(1)当t =-3时,点N的坐标为 ;(2)以MN为底边作等腰三角形MNP当t =1且直线MP经过原点O时,点P坐标为 ;若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)2、在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC的三个顶点都在格点上(1)在图中画出将ABC绕点C按逆时针方向旋转90°后得到的A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留)3、如图,三角形的项点坐标分别为,(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标4、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 5、在中,点P是线段CB上的一个动点(不与点B,C重合),过点P作直线交AB于点Q给出如下定义:若在AC边上存在一点M,使得点M关于直线l的对称点N恰好在的边上,则称点M是的关于直线l的“反称点”例如,图1中的点M是的关于直线l的“反称点”(1)如图2,若,点,在AC边上且,在点,中,是的关于直线l的“反称点”为_;(2)若点M是的关于直线l的“反称点”,恰好使得是等腰三角形,求AM的长;(3)存在直线l及点M,使得点M是的关于直线l的“反称点”,直接写出线段CP的取值范围-参考答案-一、单选题1、D【分析】首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解【详解】解:在RtABC中,AB6,BC8,由旋转性质可知,AB= AB'=6,BC= B'C'=8,B'C=10-6=4,在RtB'C'C中,故选:D【点睛】本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键2、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形3、C【分析】作点B关于AC的对称点H,连接HP、HD,由轴对称的性质可知,由题意易得,则有,然后由三角形周长公式可知,要使其最小,则需满足H、P、D三点共线即可,进而问题可求解【详解】解:作点B关于AC的对称点H,连接HP、HD,如图所示:,点D为边AB的中点,(SAS),要使其最小,则需满足H、P、D三点共线,即的最小值为HD的长,的周长最小值为;故选C【点睛】本题主要考查轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握轴对称的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键4、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案为:B【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键5、C【分析】连接PC,先根据直角三角形的性质求出,再根据旋转的性质得出,然后根据直角三角形斜边上的中线性质得出,又根据线段中点的定义得出,最后根据三角形的三边关系定理即可得出答案【详解】如图,连接PC在中,将绕顶点C逆时针旋转得到也是直角三角形,且P是的中点,M是BC的中点则由三角形的三边关系定理得:即当点恰好在的延长线上时,当点恰好在的延长线上时,综上,则线段PM的最大值为3故选:C【点睛】本题考查了直角三角形的性质、旋转的性质、三角形的三边关系定理等知识点,掌握旋转的性质是解题关键6、D【分析】根据轴对称图形,中心对称图形的定义去判断即可【详解】等边三角形是轴对称图形,不是中心对称图形,A不符合题意;平行四边形不是轴对称图形,是中心对称图形,B不符合题意;正五边形是轴对称图形,不是中心对称图形,C不符合题意;正六边形是轴对称图形,也是中心对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形,中心对称图形的定义,轴对称图形即将一个图形沿着某条直线折叠,直线两旁的部分完全重合,中心对称图形即将一个图形绕某点旋转180°后与原图形完全重合,熟练掌握两种图形的定义是解题的关键7、D【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接得到答案【详解】点M(2,3),点N与点M关于x轴对称,点N的坐标是(2,3),故选:D【点睛】本题考查了坐标轴中轴对称变化,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数8、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键9、D【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形【详解】解:根据位似图形的概念,A、B、C三个图形中的两个图形都是位似图形;D中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形故选D【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点10、C【分析】分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解【详解】解:设点D绕着点A逆时针旋转90°得到点D1,分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:根据旋转的性质得DAD1=90°,AD1=AD,AED1=ACD=90°,D1+EAD1=90°,EAD1 +DAC=90°,D1=DAC,AD1EDAC,CD=AE,ED1=AC,A(0,4),B(2,0),点D为AB的中点,点D的坐标为(1,2),CD=AE=1,ED1=AC=AO-OC=2,点D1的坐标为(2,5);设点D绕着点A顺时针旋转90°得到点D2,同理,点D2的坐标为(-2,3),综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),故选:C【点睛】本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键二、填空题1、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解2、1【分析】直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案【详解】解:点M(,a)关于y轴的对称点是点N(b,),b=-,a=,则=1故答案为:1【点睛】此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键3、【分析】由旋转的性质可得DAB=,AD=AB,B,进而即可求解【详解】解:将绕点顺时针旋转得到,DAB=,AD=AB,B,B=,故答案是:【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键4、×2【分析】根据余弦的定义求出OB,根据题意求出OBn,根据题意找出规律,根据规律解答即可【详解】解:在RtAOB中,AOB30°,OA1,OBOAcosAOB,由题意得,OB12OB×2,OB22OB1×22,OBn×2n×2n1,的长为:×22020=×22020,故答案为:×22020【点睛】本题考查的是位似变换的性质、图形的变化规律、锐角三角函数的定义,正确得到图形的变化规律是解题的关键5、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:由M(4,3)关于原点对称的点N的坐标是(4,3),故答案为:(4,3)【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键三、解答题1、(1)(2,-1);(2)(-2,1);ta+2或t-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;表示出M、N、P的坐标,比较纵坐标的绝对值即可【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称可以设N点坐标为(2,n),且MN中点在y=t上,记得点N坐标为当t =-3时,点N的坐标为(2)以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)OM直线解析式为当y=1时,P点坐标为(-2,1)由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为,MNP上所有点到x轴的距离都不小于a只需要或者当M、N、P都在x轴上方时,此时,解得ta+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,此时,解得t-a-2综上ta+2或t-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型2、(1)见详解;(2)【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可(2)由勾股定理求出AC的长度,然后利用扇形的面积公式,即可求出答案【详解】解:(1)如图所示:(2)由勾股定理,则,线段AC在旋转过程中扫过的图形面积为:;【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了扇形的面积公式,勾股定理3、(1)图见解析,;(2)图见解析,【分析】(1)写出,关于原点对称的点,连接即可;(2)连接OC,OB,根据旋转的90°可得,即可;【详解】(1),关于原点对称的点,作图如下;(2)连接OC,OB,根据旋转的90°可得,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键4、(1)画图见解析,;(2)轴,;(3)【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.5、(1)和;(2)3或或6;(3)【分析】(1)根据反称点的定义进行判断即可;(2)是等腰三角形分三种情况讨论求解即可;(3)根据“反称点的定义”判断出CP的取值范围即可【详解】解:(1)CP=1M点到PQ的距离为1M、N关于PQ对称,N点到PQ的距离为1MN=2如图,在外部,在内部,均不符合题意,是等腰直角三角形, 在AB边上,与点C重合,与关于PQ对称,在BC上,点,中,是的关于直线l的“反称点”为和故答案为:和(2)是等腰三角形分三种情况:如图,当时,是等腰直角三角形是AB边的中点, 当时,此时/BC 是等腰直角三角形,且 当时,此时,与点B重合,与点C重合,=AC=6综上,AM的长为3或或6;(3)如图,M是AC边上的点,CB=6当时,在AC边上至少有一个点M关于PQ的对称点在AB边上,当时,如图所示,此时AC上的所有点到的距离都大于3,即,M关于的对称点都在的外部,【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,对称的性质等知识,正确理解反对称点的定义是解答本题的关键