2021-2022学年人教版八年级数学下册第十八章-平行四边形定向攻克试卷(名师精选).docx
-
资源ID:32526282
资源大小:463.64KB
全文页数:30页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版八年级数学下册第十八章-平行四边形定向攻克试卷(名师精选).docx
人教版八年级数学下册第十八章-平行四边形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AEBC,垂足为点E,则AE的长是( )A5B2CD2、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形下面是某个合作小组的4位同学拟定的方案,其中正确的是( )A测量对角线是否互相平分B测量两组对边是否分别相等C测量其内角是否均为直角D测量对角线是否垂直3、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80º,那么CDE的度数为( )A20ºB25ºC30ºD35º4、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJDE于点J,交AB于点K设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:BICD;2SACDS1;S1S4S2S3;其中正确的结论有( )A1个B2个C3个D4个5、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A菱形B矩形C正方形D三角形6、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120°,AC16,则AB的长为()A16B12C8D47、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形8、在ABCD中,添加以下哪个条件能判断其为菱形( )AABBCBBCCDCCDACDACBD9、如图,点E是ABC内一点,AEB90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D910、如图,把一张长方形纸片ABCD沿AF折叠,使B点落在处,若,要使,则的度数应为( )A20°B55°C45°D60°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE翻折至AFE,连接CF,则CF的长为_2、在五边形纸片ABCDE中,AB2,A120°,将五边形纸片ABCDE沿BD折叠,点C落在点P处;在AE上取一点Q,将ABQ,EDQ分别沿BQ,DQ折叠,点A,E恰好落在点P处,如图1(1)BPQ_°;(2)BCD+QED_°;(3)如图2,当四边形BCDP是菱形,且Q,P,C三点共线时,BQ_3、如图所示,正方形ABCD的面积为6,CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA+KE的最小值为 _4、如图,在正方形ABCD中,AB2,取AD的中点E,连接EB,延长DA至F,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _5、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB3,ABC60°,求EF的长2、在ABC中,D、E、F分别是AB、AC、BC的中点,连接DE、DF(1)如图1,若ACBC,求证:四边形DECF为菱形;(2)如图2,过C作CGAB交DE延长线于点G,连接EF,AG,在不添加任何辅助线的情况下,写出图中所有与ADG面积相等的平行四边形 3、已知:如图,在中,求证:互相平分如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,且已知AB=8,BC=4(1)判断ACF的形状,并说明理由;(2)求ACF的面积;4、如图,在RtABC中,ACB90°,D为AB中点,(1)试判断四边形BDCE的形状,并证明你的结论;(2)若ABC30°,AB4,则四边形BDCE的面积为 5、如图,平行四边形ABCD中,对角线AC、BD相交于点O,ABAC,AB=3,AD=5,求BD的长-参考答案-一、单选题1、D【解析】【分析】根据菱形的性质得出BO、CO的长,在RtBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】解:四边形ABCD是菱形,CO=AC=3,BO=BD=4,AOBO,BC= =5,S菱形ABCD=,S菱形ABCD=BC×AE,BC×AE=24,AE=,故选:D【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分2、C【解析】【分析】根据矩形的判定:(1)四个角均为直角;(2)对边互相平行且相等;(3)对角线相等且平分,据此即可判断结果【详解】解:A、根据矩形的对角线相等且平分,故错误;B、对边分别相等只能判定四边形是平行四边形,故错误;C、矩形的四个角都是直角,故正确;D、矩形的对角线互相相等且平分,所以垂直与否与矩形的判定无关,故错误故选:C【点睛】本题主要考查的是矩形的判定方法,熟练掌握矩形的判定是解题的关键3、C【解析】【分析】依题意得出AE=AB=AD,ADE=50°,又因为B=80°故可推出ADC=80°,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80°,AE=AB=AD,在三角形AED中,AE=AD,DAE=80°,ADE=50°,又B=80°,ADC=80°,CDE=ADC-ADE=30°故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数4、C【解析】【分析】根据SAS证ABIADC即可得证正确,过点B作BMIA,交IA的延长线于点M,根据边的关系得出SABIS1,即可得出正确,过点C作CNDA交DA的延长线于点N,证S1S3即可得证正确,利用勾股定理可得出S1+S2S3+S4,即能判断不正确【详解】解:四边形ACHI和四边形ABED都是正方形,AIAC,ABAD,IACBAD90°,IAC+CABBAD+CAB,即IABCAD,在ABI和ADC中,ABIADC(SAS),BICD,故正确;过点B作BMIA,交IA的延长线于点M,BMA90°,四边形ACHI是正方形,AIAC,IAC90°,S1AC2,CAM90°,又ACB90°,ACBCAMBMA90°,四边形AMBC是矩形,BMAC,SABIAIBMAIACAC2S1,由知ABIADC,SACDSABIS1,即2SACDS1,故正确;过点C作CNDA交DA的延长线于点N,CNA90°,四边形AKJD是矩形,KADAKJ90°,S3ADAK,NAKAKC90°,CNANAKAKC90°,四边形AKCN是矩形,CNAK,SACDADCNADAKS3,即2SACDS3,由知2SACDS1,S1S3,在RtACB中,AB2BC2+AC2,S3+S4S1+S2,又S1S3,S1+S4S2+S3, 即正确;在RtACB中,BC2+AC2AB2,S3+S4S1+S2,故错误;综上,共有3个正确的结论,故选:C【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键5、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形【详解】解:如图,、分别是、的中点,四边形是平行四边形,平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键6、C【解析】【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120°,AOB60°,AOB是等边三角形,ABAOBO8,故选:C【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键7、D【解析】【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键8、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解【详解】A、ABBC,ABC90°,又四边形ABCD是平行四边形,四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,£ABCD是矩形;故选项B、C不符合题意;D、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键9、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键10、B【解析】【分析】设直线AF与BD的交点为G,由题意易得,则有,由折叠的性质可知,由平行线的性质可得,然后可得,进而问题可求解【详解】解:设直线AF与BD的交点为G,如图所示:四边形ABCD是矩形,由折叠的性质可知,;故选B【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键二、填空题1、3.6【解析】【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到BFC=90°,根据勾股定理求出答案【详解】解:连接BF,BC6,点E为BC的中点,BE3,又AB4,AE ,BH,则BF,点E为BC的中点,BEEC,ABE沿AE翻折至AFE,FEBE,FEBE= EC,CBF=EFB,BCF=EFC,2EFB+2EFC=180°,EFB+EFC=90°BFC90°,CF故答案为:3.6【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键2、 120 240 【解析】【分析】(1)由折叠的性质可得A=BPQ=120°;(2)由周角的性质可得BPD+QPD+BPQ=360°,即可求解;(3)由菱形的性质可得BQ=QD,QHBD,BH=DH,由“SSS”可证ABQEDQ,可得AQB=BQP=EQD=PQD=45°,由直角三角形的性质可求解【详解】解:(1)将五边形纸片ABCDE沿BD折叠,ABPQ120°,QEDQPD,BCDBPD,故答案为:120;(2)BPD+QPD+BPQ360°,BPD+QPD240°,BCD+QED240°,故答案为:240;(3)如图,连接PC,交BD于H,四边形BPDC是菱形,PC是BD的垂直平分线,BPPDBCCD,Q,P,C三点共线,QC是BD的垂直平分线,BQQD,QHBD,BHDH,由折叠可知:ABPQ120°,ABBP2DEDP,AQBBQP,EQDPQD,AQQPQE,BPH60°,PBH30°,PHBP1,BHPH,在ABQ和EDQ中, ,ABQEDQ(SSS),AQBEQD,AQBBQPEQDPQD,AQE180°,AQBBQPEQDPQD45°,QBHBQP45°, BHQH,BQBH,故答案为:【点睛】本题考查了翻折变换,菱形的性质,全等三角形的判定和性质,直角三角形的性质等知识,掌握折叠的性质是解题的关键3、【解析】【分析】根据正方形的性质可知C、A关于BD对称,推出CKAK,推出EK+AKCE,根据等边三角形性质推出CECD,根据正方形面积公式求出CD即可【详解】解:四边形ABCD是正方形,C、A关于BD对称,即C关于BD的对称点是A,如图,连接CK,则CKAK,EK+CKCE,CDE是等边三角形,CECD,正方形ABCD的面积为6,CD,KA+KE的最小值为,故答案为:【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+KE的最小值是CE4、【解析】【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果【详解】解:设,四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长5、10或14#14或10【解析】【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与相交时,如下图所示:, ,情况2:当与不相交时,如下图所示:,故答案为:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况三、解答题1、(1)矩形,见解析;(2)3【分析】(1)利用AAS判定ABEFCE,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证ABE是等边三角形,可得ABAEEF3【详解】解:(1)四边形ABFC是矩形,理由如下:四边形ABCD是平行四边形,BAECFE,ABEFCE,E为BC的中点,EBEC,在ABE和FCE中,ABEFCE(AAS),ABCF,四边形ABFC是平行四边形,ADBC,ADAF,BCAF,四边形ABFC是矩形(2)四边形ABFC是矩形,BCAF,AEEF,BECE,AEBE,ABC60°,ABE是等边三角形,ABAE3,EF3【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键2、(1)见解析;(2)DECF,DEFB,EGCF,AEFD【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)利用等高模型即可解决问题【详解】解:(1)D、E、F分别是AB、AC、BC的中点,DE、DF分别是ABC中BC边、AC边上的中位线,DEBC,DEBC,DFAC,DFAC,DEFC,DFEC,四边形DECF为平行四边形,又ACBC,DFDE,为菱形;(2),四边形是平行四边形,与ADG面积相等的平行四边形有:DECF,DEFB,EGCF,AEFD【点睛】本题考查了菱形的判定、平行四边形的判定和性质、三角形中位线定理,等高模型等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型3、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详解】证明:连接,ADDB,BEEC,BEEC,AFFC,四边形ADEF是平行四边形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键(1)ACF是等腰三角形,理由见解析;(2)10;(3)4、(1)四边形是菱形,证明见解析;(2)【分析】(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;(2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形是菱形,理由如下: , 四边形是平行四边形, ACB90°,D为AB中点, 四边形是菱形.(2) ABC30°,AB4,ACB90°, D为AB中点, 四边形是菱形, 故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.5、【分析】根据平行四边形的性质可得,勾股定理求得,进而求得【详解】解:四边形是平行四边形 ABAC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键