2022年精品解析京改版九年级数学下册第二十三章-图形的变换定向攻克试卷(无超纲).docx
-
资源ID:32526537
资源大小:1.36MB
全文页数:32页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析京改版九年级数学下册第二十三章-图形的变换定向攻克试卷(无超纲).docx
九年级数学下册第二十三章 图形的变换定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列说法:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;等腰三角形一腰上的高与底边的夹角与顶角互余;等腰三角形顶角的平分线是它的对称轴;等腰三角形两腰上的中线相等其中正确的说法有( )个A1B2C3D42、已知A(3,2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则xy的值是( )A1B0C1D23、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD4、下列图形中,是中心对称图形的是( )ABCD5、在平面直角坐标系中,点关于x轴对称的点的坐标是( )ABCD6、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD7、在平面直角坐标系中,已知点A(-4,3)与点B关于y轴对称,则点B的坐标为( )A(-4,-3)B(4,3)C(4,-3)D(-4,3)8、如图,以点O为位似中心,将DEF放大后得到ABC,已知OD=1,OA=3若DEF的面积为S,则ABC的面积为( )A2SB3SC4SD9S9、下列图形既是轴对称图形又是中心对称图形的是( )A等边三角形B双曲线C抛物线D平行四边形10、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB与x轴交于点,与x轴夹角为30°,将沿直线AB翻折,点O的对应点C恰好落在双曲线上,则k的值为_2、如图,中,D,E分别为AC,AB边上的点,将沿DE翻折,点A恰好与点B重合,若,则_3、如图,在平面直角坐标系中,等边ABC与等边BDE是以原点为位似中心的位似图形,且相似比为,点A、B、D在x轴上,若等边BDE的边长为6,则点C的坐标为 _4、如图,把一张三角形纸片(ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DEBC,若B70°,则BDF的度数为_5、如图,在平面直角坐标系中,一次函数y2x4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_三、解答题(5小题,每小题10分,共计50分)1、已知矩形,将矩形绕点A顺时针旋转,得到矩形(1)当点E在上时,求证:;(2)当时,求a值;(3)将矩形绕点A顺时针旋转的过程中,求绕过的面积2、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(2,5)关于直线l的对称点、的位置,并写出他们的坐标: , ;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);运用与拓广:(3)已知两点D(1,3)、E(3,4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小3、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC(1)作出关于x轴对称的;(2)以坐标原点为位似中心在图中的网格中作出的位似图形,使与的位似比为1:2;(3)若的面积为3.5平方单位,求出的面积4、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值5、如图,已知O是坐标原点,A,B两点的坐标分别为(2,1),(3,1),(1)以点O为位似中心,将OAB放大为原来的两倍,画出图形;(2)A点的对应点A'的坐标是 ;B点的对应点B的坐标是 ;(3)在AB上有一点P(x,y),按(1)的方式得到的对应点P的坐标是 -参考答案-一、单选题1、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可【详解】解:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;等腰三角形的顶角平分线在它的对称轴上,原说法错误;等腰三角形两腰上的中线相等,说法正确综上,正确的有,共2个,故选:B【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键2、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y【详解】A(3,2),B(1,0)平移后的对应点C(5,x),D(y,0),平移方法为向右平移2个单位,x2,y3,x+y1,故选:C【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加3、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形4、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合5、C【分析】根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求解【详解】解:点关于x轴对称的点的坐标是 故选:C【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键6、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键7、B【分析】利用y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,即可求出点B的坐标【详解】解: A(-4,3) ,关于y轴对称点B的坐标为(4,3)故答案为:B【点睛】本题主要是考查了y轴对称的点的坐标特征,熟练掌握关于不同坐标轴对称的点的坐标特征,是解决此类问题的关键8、D【分析】首先由OD=1,OA=3,求出DEF和ABC的位似比为1:3,进而得到相似比为1:3,即可根据相似三角形面积比等于相似比的平方求出ABC的面积【详解】解:OD=1,OA=3,DEF和ABC的位似比为1:3,DEF和ABC的相似比为1:3,即,ABC的面积为故选:D【点睛】此题考查了位似三角形的性质,相似三角形的性质,解题的关键是熟练掌握位似三角形的性质位似三角形的位似比等于相似比相似三角形性质:相似三角形对应边成比例,对应角相等相似三角形的相似比等于周长比,相似三角形的相似比等于对应高的比,对应角平分线的比以及对应中线的比,相似三角形的面积比等于相似比的平方9、B【分析】根据“如果一个平面图形沿一条直线折叠,直线两旁部分能够互相重合,那么这个图形就叫做轴对称图形”及“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,结合二次函数的图象及反比例函数的图象,进而问题可求解【详解】解:A、等边三角形是轴对称图形,但不是中心对称图形,故不符合题意;B、双曲线是中心对称图形,也是轴对称图形,故符合题意;C、抛物线是轴对称图形,但不是中心对称图形,故不符合题意;D、平行四边形是中心对称图形但不是轴对称图形,故不符合题意;故选B【点睛】本题主要考查轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象,熟练掌握轴对称图形、中心对称图形及二次函数的图象、反比例函数的图象是解题的关键10、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键二、填空题1、【分析】如图,过点C作CDx轴于D,根据折叠性质可得CAB=BAO=30°,AC=OA=2,可得ACD=30°,根据含30°角的直角三角形的性质可得AD的长,利用勾股定理可得出CD的长,即可得出点C坐标,代入即可得答案【详解】A(,0),OA=2,将沿直线AB翻折,点O的对应点C恰好落在双曲线上,BAO=30°,CAB=BAO=30°,AC=OA=2,CAO=60°,ACD=30°,AD=AC=1,OD=OA=1,CD=,点C在第二象限,点C坐标为(,),点C在在双曲线上,故答案为:【点睛】本题考查折叠性质、含30°角的直角三角形的性质、勾股定理及反比例函数图象上的点的坐标特征,30°角所对的直角边等于斜边的一半;图形折叠前后对应边相等,对应角相等;正确得出点C坐标是解题关键2、故答案为1: 【点睛】本题考查锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判定与性质,三角形相似判定与性质,线段的比,掌握锐角三角函数,勾股定理,折叠性质,三角形全等判定与性质,矩形判定与性质,三角形相似判定与性质,线段的比是解题关键46【分析】由翻折的性质可得:ABD=A=30°,AED=BED=90°,从而可证BD平分ABC,由角平分线的性质即可得到DE=CD=3,则AD=2DE=6【详解】解:由翻折的性质可得:ABD=A=30°,AED=BED=90°,C=90°,A=30°,ABC=60°,CBD=30°,ABD=CBD,BD平分ABC,又DEB=C=90°,DE=CD=3,AD=2DE=6,故答案为:6【点睛】本题主要考查了折叠的性质,角平分线的性质,含30度角的直角三角形的性质,熟知相关知识是解题的关键3、【分析】作CFAB于F,根据位似图形的性质得到BCDE,根据相似三角形的性质求出OA、AB,根据等边三角形的性质计算,得到答案【详解】解:作CFAB于F,等边ABC与等边BDE是以原点为位似中心的位似图形,BCDE,OBCODE,ABC与BDE的相似比为,等边BDE边长为6,解得,BC=2,OB=3,OA=1,CA=CB,CFAB,AF=1,由勾股定理得,OF=OA+AF=2,点C的坐标为故答案为:【点睛】本题考查的是位似变换的概念和性质、等边三角形的性质、掌握位似变换的概念、相似三角形的性质是解题的关键4、40°【分析】利用平行线的性质求出ADE70°,再由折叠的性质推出ADEEDF70°即可解决问题【详解】解:DEBC,ADEB70°,由折叠的性质可得ADEEDF70°,BDF180°ADE-EDF40°,故答案为:40°【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键5、#【分析】先求出点A、B的坐标,过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案【详解】解:一次函数y2x4的图像与x轴、y轴分别交于点A、B两点,令,则;令,则,点A为(2,0),点B为(0,4),;过点A作AFAB,交直线BC于点F,过点F作EFx轴,垂足为E,如图,ABF是等腰直角三角形,AF=AB,ABOFAE(AAS),AO=FE,BO=AE,点F的坐标为(,);设直线BC为,则,解得:,直线BC的函数表达式为;故答案为:;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题三、解答题1、(1)见解析;(2)旋转角为 60°或者 300°;(3)9【分析】(1)由旋转的性质及等腰三角形性质得AEBABE,由AEFBAD可得EAFABD,从而有AEBEAF,故由平行线的判定即可得到结论;(2)分点G在AD的右侧和AD的左侧两种情况;均可证明GAD是等边三角形,从而问题解决;(3)由S阴影S扇形ACFS扇形ADG,分别计算出两个扇形的面积即可求得阴影部分面积【详解】(1)连接AF,由旋转可得,AEAB,EF=BC,AEF=ABC=90AEBABE,又四边形ABCD是矩形ABC=BAD=90,BC=ADEF=AD,AEF=BAD=90在AEF和BAD中 AEFBAD(SAS),EAFABD,AEBEAF,AFBD (2)如图,当GBGC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GCGB,GHBC,四边形ABHM是矩形,AMBHADAG,GM垂直平分AD,GDGADA,ADG是等边三角形,DAG60°,旋转角60°; 当点G在AD左侧时,同理可得ADG是等边三角形,DAG60°,旋转角360°60°300° 旋转角为 60°或者 300°(3)如图3,S扇形ACF25,S扇形ADG16,S阴影S扇形ACFS扇形ADG25169即阴影部分的面积为【点睛】本题考查了矩形的性质,旋转的性质,等边三角形的判定与性质,扇形面积,线段垂直平分线的判定等知识,涉及的知识点较多,灵活运用这些知识是解题的关键,(2)小问注意分类讨论2、(1)(3,5),(5,2);(2)(b,a);(3)Q(-3,-3)【分析】(1)根据点关于直线对称的定义,作出B、C两点关于直线l的对称点B、C,写出坐标即可(2)通过观察即可得出对称结论(3)作点E关于直线l的对称点E(4,3),连接DE交直线l于Q,此时QE+QD的值最小【详解】解:(1)B(5,3)、C(2,5)关于直线l的对称点B、C的位置如图所示B(3,5),C(5,2)故答案为B(3,5),C(5,2)(2)由(1)可知点P(a,b)关于第一、三象限的角平分线l的对称点P的坐标为P(b,a)(3)作点E关于直线l的对称点E(4,3),连接DE交直线l于Q,两点之间线段最短此时QE+QD的值最小,由图象可知Q点坐标为(-3,-3)【点睛】本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为;关于第二、四象限角平分线对称的点的坐标为.3、(1)见解析;(2)见解析;(3)14平方单位【分析】(1)根据轴对称性质即可画出ABC关于x轴对称的;(2)根据位似图形的性质即可画出以点O为位似中心的位似图形,与的位似比为1:2;(3)利用相似三角形的性质计算即可【详解】解:(1)如图,即为所求作;(2)如图,即为所求作;(3)与的位似比为1:2,的面积为3.5平方单位,即的面积为3.5平方单位,的面积为:2=4×3.5=14平方单位【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型4、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120°,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120°,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120°,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键5、(1)图见解析;(2)或,或;(3)或【分析】(1)分放大后的图形在左侧,放大后的图形在右侧两种情况,先分别将点的横纵坐标乘以2或得到点,再顺次连接点即可得;(2)结合(1)的两种情况,根据位似图形的性质即可得;(3)结合(1)的两种情况,根据位似图形的性质即可得【详解】解:(1)当放大后的图形在左侧时,画图如下:当放大后的图形在右侧时,画图如下:(2),或,即或,故答案为:或,或;(3),或,故答案为:或【点睛】本题考查了画位似图形、点坐标与位似图形,正确分两种情况讨论是解题关键