2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解章节测评试卷(无超纲带解析).docx
-
资源ID:32528072
资源大小:194.96KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解章节测评试卷(无超纲带解析).docx
北师大版八年级数学下册第四章因式分解章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A若a100,则bc0B若a100,则bc1C若bc,则a+bcD若a100,则abc2、下列多项式中,不能用公式法因式分解的是( )ABCD3、下列因式分解正确的是( )A16m24(4m2)(4m2)Bm41(m21)(m21)Cm26m9(m3)2D1a2(a1)(a1)4、下列从左边到右边的变形,是因式分解的是( )A(3x)(3x)9x2Bx2y2(xy)(xy)Cx2xx(x1)D2yzy2zzy(2zyz)z5、已知a22a10,则a42a32a1等于( )A0B1C2D36、下列多项式中能用平方差公式分解因式的是( )ABCD7、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y8、下列各式中,正确的因式分解是( )ABCD9、可以被24和31之间某三个整数整除,这三个数是( )A25,26,27B26,27,28C27,28,29D28,29,3010、下列多项式中能用平方差公式分解因式的是()Aa2b2Bx2+(y)2C(x)2+(y)2Dm2+1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则_2、当x=4,a+b=-3时,代数式:ax+bx的值为_3、分解因式:_4、因式分解:_5、在处填入一个整式,使关于的多项式可以因式分解,则可以为_(写出一个即可)三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1);(2)2、分解因式:(1);(2)3、分解因式:4、已知xy5,x2yxy2x+y40(1)求xy的值(2)求x2+y2的值5、因式分解:(1)(2)(3)-参考答案-一、单选题1、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键2、D【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.3、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止4、C【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可【详解】解:A、(3x)(3x)9x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2xx(x1),属于因式分解,符合题意;D、2yzy2zz,原式分解错误,不符合题意;故选:C【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键5、C【分析】由a22a10,得出a22a1,逐步分解代入求得答案即可【详解】解:a22a10,a22a1,a42a32a+1a2(a22a)2a+1a22a+11+12故选:C【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键6、A【分析】利用平方差公式逐项进行判断,即可求解【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键7、D【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键8、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案【详解】解:,故此选项不合题意;,故此选项符合题意;,故此选项不合题意;,故此选项不合题意;故选:【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键9、B【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.10、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键二、填空题1、-3【分析】将多项式因式分解后,整体代入即可【详解】解:,故答案为:-3【点睛】本题主要考查了提取公因式法分解因式,代数式求值,正确提取公因式是解题关键2、-12【分析】本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可【详解】解:x=4,a+b=-3ax+bx故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想3、【分析】首先提取公因式,再根据平方差公式计算,即可得到答案【详解】故答案为:【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解4、【分析】先提公因式,再利用完全平方公式分解即可【详解】解:=故答案为:【点睛】本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式5、2x【分析】可根据完全平方公式或提公因数法分解因式求解即可【详解】解:,可以为2x、2x、2x1等,答案不唯一,故答案为:2x【点睛】本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键三、解答题1、(1);(2)【分析】(1)先提取公因式,然后再根据平方差公式进行因式分解即可;(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可【详解】解:(1)原式=;(2)原式=【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键2、(1);(2)【分析】(1)利用完全平方公式进行分解因式,即可解答;(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可【详解】(1)原式,;(2)原式,【点睛】本题考查了因式分解,解决本题的关键是熟记因式分解的方法3、【分析】先提取公因式,然后利用十字相乘和平方差公式分解因式即可【详解】解:原式=【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法4、(1)xy10;(2)x2+y2110【分析】(1)利用提取公因式法对(x2yxy2x+y)进行因式分解,代入求值即可(2)利用完全平方公式进行变形处理得到:x2+y2(xy)2+2xy,代入求值即可【详解】解:(1)xy5,x2yxy2x+y40,x2yxy2x+yxy(xy)(xy)(xy1)(xy)xy5,(51)(xy)40,xy10(2)x2+y2(xy)2+2xy1022×5110【点睛】本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2(xy)2+2xy5、(1);(2);(3)【分析】(1)利用提取公式法因式分解即可;(2)利用提取公式法因式分解即可;(3)提取公因式2y,在利用完全平方公式因式分解即可【详解】解:(1);(2)(3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键