2021-2022学年人教版九年级数学下册第二十六章-反比例函数专题测试试题(含答案解析).docx
-
资源ID:32528077
资源大小:716.76KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版九年级数学下册第二十六章-反比例函数专题测试试题(含答案解析).docx
人教版九年级数学下册第二十六章-反比例函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,反比例函数过点,正方形的边长为,则的值是( ) ABCD2、如图,和均为等腰直角三角形,且顶点A、C均在函数的图象上,连结交于点E,连结若,则k的值为( )A B C4D3、关于反比例函数,下列说法不正确的是( )A图象经过B图象位于一、三象限C图象关于直线对称D随的增大而增大4、已知点(x1,y1),(x2,y2)均在双曲线y上,下列说法中错误的是()A若x1x2,则y1y2B若x1x2,则y1y2C若0x1x2,则y1y2D若x1x20,则y1y25、如图,和都是等腰直角三角形,反比例函数在第一象限的图象经过点B,则与的面积之差为( )A9B12C6D36、若反比例函数的图象经过点,则这个函数的图象一定经过点( )ABCD7、如图,四边形OABC是矩形,四边形ADEF是边长为2的正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在线段AB上,点B,E在反比例函数y(k0)的图象上,若S四边形OABCS四边形ADEF2,则k的值为()A2B3C4D68、若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y的图象上的点,并且x10x2x3,则下列各式中正确的是()Ay1y3y2By2y3y1Cy3y2y1Dy1y2y39、如果反比例函数的图象经过点P(3,1),那么这个反比例函数的表达式为()AyByCyxDyx10、反比例函数与一次函数在同一坐标系中的大致图象可能是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知反比例函数,在x>0时,y随x的增大而减小,则k的取值范围是_2、如图,四边形是平行四边形,点C在x轴的负半轴上,将 ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上若点D在反比例函数的图像上,则k的值为_3、若反比例函数y,当x>0时,y随着x的增大而增大,则k的取值范围是_4、反比例函数(x<0)图象上的点的函数值y随x增大而_ (填“增大”或“减小”)5、如图,曲线AB是顶点为B,与y轴交于点A的抛物线yx2+4x+2的一部分,曲线BC是双曲线的一部分,由点C开始不断重复“ABC”的过程,形成一组波浪线,点P(2018,m)与Q(2020,n)均在该波浪线上,则mn_三、解答题(5小题,每小题10分,共计50分)1、如图:一次函数的图象与反比例函数的图象交于和点(1)求点的坐标;(2)根据图象回答,当在什么范围时,一次函数的值大于反比例函数的值2、如图,在平面直角坐标系中,一次函数yx+1与反比例函数y的图象在第四象限相交于点A(2,1),一次函数的图象与x轴相交于点B(1)求反比例函数的表达式及点B的坐标;(2)当一次函数值小于反比例函数值时,请直接写出x的取值范围是 ;(3)点C是第二象限内直线AB上的一个动点,过点C作CDx轴,交反比例函数y的图象于点D,若以O,B,C,D为顶点的四边形为平行四边形,请直接写出点C的坐标为 3、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分)(1)上课后的第5分钟与第30分钟相比较,第 分钟时学生的注意力更集中(2)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由4、如图,已知一次函数与反比例函数的图象在第一、三象限分别交于A,B两点,点B的横坐标为,连接(1)求k的值(2)求的面积5、我国自主研发多种新冠病毒有效用药已经用于临床救治某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度(微克/ml)与注射时间天之间的函数关系如图所示(当时,与是正比例函数关系;当时,与是反比例函数关系)(1)根据图象求当时,与之间的函数关系式;(2)当时,体内抗体浓度不高于140微克/ml时是从注射药物第多少天开始?-参考答案-一、单选题1、D【分析】根据正方形的边长为,求出点A(-2,2),根据反比例函数过点A,将点A坐标代入解析式求出k即可【详解】解:正方形的边长为,OB=OC=2,点A(-2,2),反比例函数过点A,故选:D【点睛】本题考查待定系数法求反比例函数解析式,正方形的性质,解题关键是根据正方形边长得出点A坐标2、C【分析】先证明可得如图,过作轴于 利用等腰直角三角形的性质证明再利用反比例函数值的几何意义可得答案.【详解】解: 和均为等腰直角三角形, 如图,过作轴于 为等腰直角三角形, 反比例函数的图象在第一象限,则 故选C【点睛】本题考查的是等腰直角三角形的性质,反比例函数值的几何意义,掌握“反比例函数k值的几何意义”是解本题的关键.3、D【分析】直接利用反比例函数的性质分别分析得出答案【详解】解:、反比例函数中,当时,即该函数图象经过点,说法正确,不合题意;、反比例函数的图象位于第一、三象限,说法正确,不合题意;、反比例函数的图象关于直线对称,说法正确,不合题意;、反比例函数的图象在每一象限内随的增大而减小,说法错误,符合题意故选:D【点睛】本题主要考查了反比例函数的性质,解题的关键是正确掌握相关性质4、D【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线y,用y1、y2表示出x1,x2,据此进行判断【详解】解:点(x1,y1),(x2,y2)均在双曲线y上,y1,y2A、当x1x2时,即y1y2,故本选项说法正确;B、当x1x2时,即y1y2,故本选项说法正确;C、因为双曲线y位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当0x1x2时,y1y2,故本选项说法正确;D、因为双曲线y位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当x1x20时,y1y2,故本选项说法错误;故选:D【点睛】本题主要考查了反比例函数的图象性质,熟悉掌握反比例函数的图象变化进行比较是解题的关键5、D【分析】已知反比例函数的解析式为y=,根据系数k的代数意义,设函数图象上点B的坐标为(m,)再结合已知条件求解即可;【详解】解:如图,设点C(n,0),点B在反比例函数y=的图象上,设点B(m,)OAC和BAD都是等腰直角三角形,点A的坐标为(n,n),点D的坐标为(n,),AD=BD,n=mn,化简整理得m22mn=6SOACSBAD=n2(mn)2=m2+mn=(m22mn),SOACSBAD=3故选D【点睛】本题主要考查了反比例函数与几何综合,三角形面积,等腰直角三角形的性质,解题的关键在于能够熟练掌握反比例函数图像上点的坐标特征6、C【分析】根据已知条件求出k的值判断即可;【详解】反比例函数的图象经过点,A中,所以函数的图象不经过该点,故本项错误;B中,所以函数的图象不经过该点,故本项错误;C中,所以函数的图象经过该点,故本项正确;D中,所以函数的图象不经过该点,故本项错误;故选C【点睛】本题主要考查了反比例函数图象上点的坐标特征,准确计算是解题的关键7、D【分析】设B点坐标为(m,n),则OA=m,AB=n,根据S四边形OABCS四边形ADEF2,得到,即,则,由此即可得到答案【详解】设B点坐标为(m,n),OA=m,AB=n,S四边形OABCS四边形ADEF2,即,又点B在反比例函数上,故选D【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握反比例函比例系数的几何意义8、B【分析】先根据,可以得到,则可得到反比例函数的图象位于二、四象限,如图在每个象限内,y随x的增大而增大,据此求解即可【详解】解:,反比例函数的图象位于二、四象限,如图,在每个象限内,y随x的增大而增大,x10x2x3,y2y3y1故选B【点睛】本题主要考查了比较反比例函数的函数值的大小,解题的关键在于能够根据题意得到从而判断出反比例函数图像的增减性9、A【分析】根据点的坐标,利用待定系数法即可得【详解】解:设这个反比例函数的表达式为,由题意,将点代入得:,则这个反比例函数的表达式为,故选:A【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键10、A【分析】反比例函数y的图象位于第二、四象限,一次函数yx1的图象必过第一、三,四象限,且与y轴的交点在y轴负半轴上,根据以上两个特征即可确定结果【详解】解:y中的比例系数为-4反比例函数y的图象位于第二、四象限,一次函数yx2中比例系数为正数1,一次函数yx2的图象必过第一、三象限,一次函数yx2中b=-2,一次函数yx2的图象还过第四象限,即一次函数yx2的图象过第一、三、四象限,满足题意的是选项A,故选A【点睛】本题考查了反比例函数与一次函数的图象与性质,在给定了反比例函数与一次函数的解析式后,根据它们的比例系数即可确定函数图象经过的象限,根据一次函数的b的符合可最后确定一次函数所经过的象限二、填空题1、【解析】【分析】反比例函数当时,图象分布在一、三象限,在每个分支中,y随x的增大而减小;当时,图象分布在二、四象限,在每个分支中,y随x的增大而增大【详解】解:根据题意,反比例函数,在x>0时,y随x的增大而减小,可知该反比例函数图象分布在第一象限,故答案为:【点睛】本题考查反比例函数的图象与性质,是重要考点,掌握相关知识是解题关键2、【解析】【分析】根据平行四边形的性质和旋转的性质可以求得点D的坐标,从而可以求得k的值【详解】解:如图,作DMx轴由题意可得,OA=2,AF=2,AFO=AOF,ABOF,BAO=OAF,BAO=AOF,BAF+AFO=180°,解得,BAO=60°,DOC=60°,AO=2,AD=6,OD=4,点D的横坐标是:-4×cos60°=-2,纵坐标为:-4×sin60°=-2,点D的坐标为(-2,-2),D在反比例函数y=(x0)的图象上,-2=,得k=4,故答案为:4【点睛】本题考查了反比例函数图象上点的坐标特征、平行四边形的性质、坐标与图形,解答本题的关键是明确题意,利用数形结合的思想解答3、k>1【解析】【分析】若反比例函数y,当x>0时,y随着x的增大而增大,即反比例系数1-k<0,从而求得k的范围【详解】解:反比例函数y,当x>0时,y随着x的增大而增大,1-k<0解得:k>1故答案为:k>1【点睛】正确理解反比例函数的性质,能把函数的增减性与比例系数的符号相结合解题,是最基本的要求4、增大【解析】【分析】根据反比例函数的比例系数进而判断函数的增减性,即可求得答案【详解】解:反比例函数(x<0)图象上的点的函数值y随x增大而增大故答案为:增大【点睛】本题考查了判断反比例函数的增减性,理解“时,反比例函数图象在每个象限内是y随x增大而增大”是解题的关键5、18【解析】【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为2,A,B之间的水平距离为2,双曲线解析式为y,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m6,点Q、点Q'离x轴的距离相同,都为3,即点Q的纵坐标n3,即可得到mn的值【详解】解:由图可得,A,C之间的水平距离为6,由抛物线yx2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m6,由B(2,6)可得,双曲线解析式为y=,故点Q与点P的水平距离为2,点Q'的横坐标,在y中,令x4,则y3,点Q、点Q'离x轴的距离相同,都为3,即点Q的纵坐标n3,故答案为:18【点睛】此题考查图象规律的探究,根据图象中点的坐标得到点坐标的变化规律是解题的关键三、解答题1、(1);(2)或【分析】(1)先根据点的坐标可得反比例函数的解析式,再将点的坐标代入计算即可得;(2)结合点的坐标,根据一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方即可得【详解】解:(1)将点代入得:,则反比例函数的解析式为,将点代入得:,则点的坐标为;(2)一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,或【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法和函数图象法是解题关键2、(1),;(2)或;(3),或,【分析】(1)将点坐标代入反比例函数关系式求出,把代入一次函数关系式求得点横坐标,进而求得结果;(2)先求出直线和反比例函数另一个交点坐标,然后由图象得出结果;(3)因为,所以只需,设点的纵坐标是,表示出、两点横坐标,列出方程求得结果【详解】解:(1)过,由得,;(2)由得,当一次函数值小于反比例函数值时,或,故答案是:或;(3)设,当时,在第二象限,或,或,故答案是:,或,【点睛】本题考查了反比例函数、一次函数及其图象性质,平行四边形判定等知识,解题的关键是设点的坐标,正确表示线段长度3、(1)5;(2)能,理由见解析【分析】(1)根据函数解析分别求得时,时的函数值,即可得到结论;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能【详解】设线段AB的解析式为:yABkx+b,把(10,50)和(0,30)代入得,解得,直线AB的解析式为:;设双曲线CD的函数关系式为:,把(20,50)代入得,50,a1000,双曲线CD的函数关系式为:;(1)当时,时,故答案为:5;(2)当y40时,则2x+3040,解得x5;当y40时,则40,解得x252552018教师能在学生注意力达到所需要求状态下讲完这道题【点睛】本题考查了反比例函数与一次函数的应用,根据函数图象获取信息是解题的关键4、(1);(2)8【分析】(1)先根据一次函数的解析式求出点的坐标,再利用待定系数法即可得;(2)设一次函数与轴的交点为点,先根据一次函数的解析式求出点的坐标,再联立一次函数和反比例函数的解析式求出点的坐标,然后根据的面积等于的面积与的面积之和即可得【详解】解:(1)对于一次函数,当时,即,将点代入得:;(2)如图,设一次函数与轴的交点为点,当时,解得,即,由(1)可知,反比例函数的解析式为,联立,解得或,则,所以,即的面积为8【点睛】本题考查了反比例函数与一次函数的综合等知识点,熟练掌握待定系数法是解题关键5、(1);(2)体内抗体浓度不高于140微克/ml是从注射药物第40天开始【分析】(1)直接利用反比例函数解析式求法得出答案;(2)结合所求解析式,把代入求出答案【详解】解:(1)设当时,与之间的函数关系式是,图象过解得:,y与之间的函数关系式是;(2)当时,解得:,体内抗体浓度不高于140微克/ml是从注射药物第40天开始【点睛】本题主要考查了反比例函数的应用,解题的关键是正确求出函数解析式