2022年最新人教版九年级数学下册第二十八章-锐角三角函数综合训练试题(含解析).docx
-
资源ID:32529698
资源大小:1.10MB
全文页数:38页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新人教版九年级数学下册第二十八章-锐角三角函数综合训练试题(含解析).docx
人教版九年级数学下册第二十八章-锐角三角函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD2、如图,ABC的顶点是正方形网格的格点,则sinACB的值为()A3BCD3、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A:B:C:D:4、某人沿坡度的斜坡向上前进了10米,则他上升的高度为( )A5米BCD5、等腰三角形的底边长,周长,则底角的正切值为( )ABCD6、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是( )A2BCD7、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米8、如图,AC是电杆AB的一根拉线,测得米,则拉线AC的长为( )A米B6sin52°米C米D米9、如图,建筑工地划出了三角形安全区,一人从点出发,沿北偏东53°方向走50m到达C点,另一人从B点出发沿北偏西53°方向走100m到达C点,则点A与点B相距( )ABCD130m10、在RtABC中,C90°,BC3,AC4,那么cosB的值等于()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN若,(1)矩形ABCD的面积为_;(2)的值为_2、如图,中,点D、点E分别在AB、AC上,连接CD、ED,则_3、助推轮椅可以轻松解决起身困难问题如图1是简易结构图,该轮椅前O1和后轮O2的半径分别为0.6dm和3dm,竖直连接处CO11dm,水平连接处BD与拉伸装置DE共线,BD2dm,座面GF平行于地面且GFDE4.8dm,HF是轮椅靠背,ADE始终保持角度不变初始状态时,拉伸杆AD的端点A在点B正上方且距地面2.2dm,则tanADB的值为 _如图2,踩压拉伸杆AD,装置随之运动,当AD踩至与BD重合时,点E,F,H分别运动到点E',F',H',此时座面GF'和靠背F'H'连成一直线,点H运动到最高点H',且H',F,O2三点正好共线,则H'O2的长为 _dm4、如图为折叠椅,图是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长度相等,O是它们的中点为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm,DOB100°,那么椅腿AB的长应设计为 _cm(结果精确到0.1cm,参考数据:sin50°cos40°0.77,sin40°cos50°0.64,tan40°0.84,tan50°1.19)5、如图,ABC中,BDAB,BD、AC相交于点D,ADAC,AB2,ABC150°,则DBC的面积是_三、解答题(5小题,每小题10分,共计50分)1、如图,矩形的两边在坐标轴上,点A的坐标为,抛物线过点B,C两点,且与x轴的一个交点为,点P是线段CB上的动点,设()(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作,交抛物线于点E,连接BE,当t为何值时,和中的一个角相等?(3)点Q是x轴上的动点,过点P作PMBQ,交CQ于点M,作PNCQ,交BQ于点N,当四边形为正方形时,求t的值2、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF30cm,CE:CD1:3,DCF45°,CDF30°,请根据以上信息,解决下列问题(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离 cm3、如图,在中,点P从点出发,沿折线向终点C运动,点P在边、边上的运动速度分别为、在点P的运动过程中,过点P作所在直线的垂线,交边或边于点Q,以为一边作矩形,且,与在的同侧设点P的运动时间为t(秒),矩形与重叠部分的面积为(1)求边的长(2)当时, ,当时, (用含t的代数式表示)(3)当点M落在上时,求的值(4)当矩形与重叠部分图形为四边形时,求S与的函数关系式4、在中,为锐角且(1)求的度数;(2)求的正切值5、已知直线m与O,AB是O的直径,ADm于点D(1)如图,当直线m与O相交于点E、F时,求证:DAE=BAF (2)如图,当直线m与O相切于点C时,若DAC=35°,求BAC的大小;(3)若PC2,PB2,求阴影部分的面积(结果保留)-参考答案-一、单选题1、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形2、D【分析】连接格点AD,构造直角三角形,先计算AC,再算ACB的正弦即可【详解】连接格点A、D,如图在RtADC中,AD3,CD1,CAsinACB故选:D【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键3、A【分析】直接用勾股定理求出水平距离为12,再根据坡度等于竖直距离:水平距离求解即可【详解】解:由勾股定理得,水平距离,斜坡的坡度:,故选A【点睛】本题主要考查了坡度和勾股定理,解题的关键在于能够熟练掌握坡度的定义4、B【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边根据题意可得BC:AC=1:2,AB=10m,可解出直角边BC,即得到位置升高的高度【详解】解:由题意得,BC:AC=1:2 设BC=x,则AC=2xAB=10, BC2+ AC2=AB2,x2+ (2x)2=102,解得:x=故选:B【点睛】本题主要考查了坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化5、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键6、C【分析】根据网格的特点,勾股定理求得的长,进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键7、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90°,A65°,AO30m,tan65°,BO30tan65°米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边8、D【分析】根据余弦定义:即可解答【详解】解:,米,米;故选D【点睛】此题考查了解直角三角形的应用,将其转化为解直角三角形的问题是本题的关键,用到的知识点是余弦的定义9、B【分析】设经过A点的东西方向线与经过B点的南北方向线相交于点D,过C作CFAD,CEAD,BEAG,则GACACFEBCBCF53°,在RtACF和RtBCE中,根据正切三角函数的定义得到,结合勾股定理可求得AF40,CFDE30,FDCE80,BE60,在RtABD中,根据勾股定理即可求得AB【详解】解:如图,设经过A点的东西方向线与经过B点的南北方向线相交于点D,过C作CFAD,CEAD,BEAG,CEB90°,GACACFEBCBCF53°,AC50,BC100,四边形CEDF是矩形,DECF,DFCE,在RtACF中,tanACFtan53°,在RtBCE中,tanEBCtan53°,tan53°,AFCF,CEBE,在RtACF中,AF2+CF2AC2,CF2+(CF)2502,解得CFDE30,AF×3040,在RtBCE中,BE2+CE2BC2,BE2+(BE)21002,解得BE60,CEDF×6080,ADAF+DF120,BDBEDE30,在RtABD中,AD2+BD2AB2,AB30故选:B【点睛】本题考查的是解直角三角形的应用方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键10、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90°,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键二、填空题1、 【解析】【分析】(1)矩形ABCD中,由折叠可得DF=AD=3,在中,用勾股定理求得,即可求得矩形ABCD的面积;(2)由折叠可得,矩形ABCD中,四点共圆,故,设,在中,由勾股定理得: ,即可求的值.【详解】(1)矩形ABCD中,由折叠可得DF=AD=3,在中,矩形ABCD的面积=,故答案为:;(2)将沿DE折叠,使点A的对应点F恰好落在边BC上,矩形ABCD中,四点共圆,设,则,在中,由勾股定理得:,即,解得,=.故答案为:【点睛】本题考查了勾股定理、矩形的性质、锐角三角函数等知识,掌握相应的定理是解答此题的关键.2、【解析】【分析】如图,过作于 过作于 作于 证明四边形为矩形,再求解 证明 设 则 再表示 利用列方程,再解方程可得答案.【详解】解:如图,过作于 过作于 作于 四边形为矩形, 设 则 由 同理: 解得: 故答案为:【点睛】本题考查的是等腰直角三角形的性质,矩形的判定与性质,等腰三角形的判定与性质,锐角三角函数的应用,熟练的运用“锐角三角函数建立方程”是解本题的关键.3、 ; ;【解析】【分析】根据题意求得到的距离,进而根据正切的定义可得;如图2,过点作交的延长线于点,解直角三角形即可解决问题【详解】解:拉伸杆AD的端点A在点B正上方且距地面2.2dm,BD2dm,O1半径分别为0.6dm,竖直连接处CO11dm,设到的距离为,则dm如图1,连接,过点作,中ADE始终保持角度不变GFDE,四边形是平行四边形装置运动后,如图2,过点作交的延长线于点,则设,则,解得故答案为:,【点睛】本题考查了垂径定理,解直角三角形的应用,两图中有一个角是相等的,找到这个角的并求得它的正切值为是解题的关键4、【解析】【分析】连接BD,过点O作OHBD于点H,从而得到OB=OD,进而得到BOH=50°,在中,可求出OB,即可求解【详解】解:如图,连接BD,过点O作OHBD于点H,AB=CD,点O是AB、CD的中点,OB=OD,DOB100°,BOH=50°, ,在中, , 故答案为:【点睛】本题主要考查了解直角三角形,等腰三角形的性质,熟练掌握相关知识点是解题的关键5、3314#3143【解析】【分析】过点作,交延长线于点,先根据相似三角形的判定证出,根据相似三角形的性质可得,从而可得,再解直角三角形可得,从而可得,然后利用三角形的面积公式即可得【详解】解:如图,过点作,交延长线于点,解得,又,在中,即,解得,解得,则的面积是,故答案为:【点睛】本题考查了相似三角形的判定与性质、解直角三角形等知识点,通过作辅助线,构造相似三角形是解题关键三、解答题1、(1)C(0,4),B(10,4),抛物线解析式为yx2x4;(2)t3时,PBEOCD;(3)t的值为或【解析】【分析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得PBEOCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)当四边形PMQN为正方形时,则可证得COQQAB,利用相似三角形的性质可求得CQ的长,在RtBCQ中根据勾股定理可求得BQ、CQ,利用三角函数可用t分别表示出PM和PN,可得到关于t的方程,可求得t的值【详解】解:(1)在yax2bx4中,令x0可得y4,C(0,4),四边形OABC为矩形,且A(10,0),B(10,4),把B、D坐标代入抛物线解析式可得,解得,抛物线解析式为yx2x4;(2)点P在BC上,可设P(t,4),点E在抛物线上,E(t,t2t4),PB10t,PEt2t44t2t,BPECOD90°,当PBEOCD时,则PBEOCD,即BPODCOPE,2(10t)4(t2t),解得t3或t10(不合题意,舍去),当t3时,PBEOCD; 当PBECDO时,则PBEODC,即BPOCDOPE,4(10t)2(t2t),解得t12或t10(均不合题意,舍去)综上所述当t3时,PBEOCD;(3)当四边形PMQN为正方形时,则PMCPNBCQB90°,PMPN,CQOAQB90°,CQOOCQ90°,OCQAQB,COQ=QAB=90°COQQAB,即OQAQCOAB,设OQm,则AQ10m,m(10m)4×4,整理得,解得m2或m8,当m2时,CQ,BQ,sinBCQ,sinCBQ,PMPCsinPCQt,PNPBsinCBQ(10t),t (10t),解得t,当m8时,CQ,BQ,sinBCQ,sinCBQ,PMPCsinPCQt,PNPBsinCBQ(10t),t (10t),可求得t,当四边形PMQN为正方形时,t的值为或【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、相似三角形的判定和性质、勾股定理、解直角三角形、方程思想等知识在(1)中注意利用矩形的性质求得B点坐标是解题的关键,在(2)中证得PBEOCD是解题的关键,在(3)中利用RtCOQRtQAB求得CQ的长是解题的关键本题考查知识点较多,综合性较强,难度较大2、(1)(40+40)cm;(2)(20)cm【解析】【分析】(1)过点F作FGDE于点G,分别利用三角函数求出FG和DG,然后求出CD,进而求出CE,即可求出DE,最后根据AC2DE即可求出AC;(2)作AHED延长线于H,根据AHAC·sin45°求出AH即可【详解】解:(1)过点F作FGDE于点G,FGDFGC90°,在RtDGF中,CDF30°,FGFDsin30°30×15(cm),DGFDcos30°30×15(cm),在RtCGF中,DCF45°,CGFG15(cm),CDCG+DG15+15(cm),CE:CD1:3,CECD×(15+15)5+5(cm),DEEC+CD5+5+15+1520+20(cm),DEBCAB,ACAB+BC2DE2×(20+20)40+40(cm),即AC的长度为(40+40)cm(2)作AHED延长线于H,在RtAHC中,ACH45°,AHACsin45°(40+40)×20+20(cm),故答案为:(20)【点睛】本题考查了解直角三角形应用题,一般步骤为(1)弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型(2)将实际问题中的数量关系归结为解直角三角形的问题当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形(3)寻找直角三角形,并解这个三角形3、(1);(2);(3)或;(4)【解析】【分析】(1)利用勾股定理直接计算即可;(2)先求解再用含的代数式表示 再利用三角函数建立方程求解两种情况下的即可;(3)分两种情况讨论:如图,当在上,落在上,如图,当在上,落在上,则重合,再利用矩形的性质结合三角函数可得结论;(4)如图,当第一次落在上,即时,此时重叠部分的面积为四边形, 当时,重叠部分为四边形,如图, 当时,此时重叠部分的面积为四边形,如图,当第2次落在上时, 当时,此时重叠部分的面积为四边形,再利用图形的性质列面积函数关系式即可.【详解】解:(1) , (2)当时,在上, 而四边形为矩形, 当时,在上,如图,此时, , , 故答案为: (3)如图,当在上,落在上,此时 解得: 如图,当在上,落在上,则重合, 同理可得: 解得: (4)当第一次落在上,即时,此时重叠部分的面积为四边形,如图,此时 当落在上时,如图,同理可得: 解得: 当时,重叠部分为四边形,如图,同理可得: 如图,当落在上时,同理可得: 而 解得: 当时,此时重叠部分的面积为四边形,如图,此时 当第2次落在上时, 当时,此时重叠部分的面积为四边形,如图,同理可得: 综上:【点睛】本题考查的是平行四边形的性质,矩形的判定与性质,列面积函数关系式,锐角三角函数的应用,清晰的分类讨论是解题的关键.4、(1)60°,(2)3【解析】【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60°;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是解题的关键5、(1)见解析;(2);(3)【解析】【分析】(1)通过已知条件可知,再通过同角的补交相等证得,即可得到答案;(2)利用,得,再通过OA=OC,得;(3)现在中,利用勾股定理求得半径r=2,再通过,得,即可求得,那么,即可求解【详解】解:(1)如图,连接BFADmAB是O的直径,DAE=BAF(2)连接OC直线m与O相切于点CADmOA=OC(3)连接OC直线m与O相切于点C设半径OC=OB=r在中,则:解得:r=2,即OC=r=2【点睛】本题考查了圆切线、内接四边形的性质,以及解直角三角形的应用,扇形面积求法,解答此题的关键是掌握圆的性质