2021-2022学年最新北师大版九年级数学下册第三章-圆同步练习练习题(精选).docx
-
资源ID:32530208
资源大小:1.03MB
全文页数:27页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新北师大版九年级数学下册第三章-圆同步练习练习题(精选).docx
北师大版九年级数学下册第三章 圆同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B,C都在O上,连接CA,CB,OA,OB若AOB=140°,则ACB为( )A40°B50°C70°D80°2、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米3、已知在圆的内接四边形ABCD中,A:C3:1,则C的度数是()A45°B60°C90°D135°4、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为()A4m2B12m2C24m2D24m25、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20°B25°C30°D40°6、如图,在RtABC中,ACB90°,AB5 cm,BC3 cm,ABC绕AC所在直线旋转一周,所形成的圆锥侧面积等于( )A4cm2B8cm2C12cm2D15cm27、如图,AB是O的直径,BD与O相切于点B,点C是O上一点,连接AC并延长,交BD于点D,连接OC,BC,若BOC50°,则D的度数为()A50°B55°C65°D75°8、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD9、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定10、如图,面积为18的正方形ABCD内接于O,则O的半径为( )ABC3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB,CD于点E,F,则弧EF的长是_2、如图,正五边形ABCDE内接于O,作OFBC交O于点F,连接FA,则OFA_°3、已知某扇形的半径为5cm,圆心角为120°,那么这个扇形的弧长为 _cm4、如图,以矩形的对角线为直径画圆,点、在该圆上,再以点为圆心,的长为半径画弧,交于点若,则图中影部分的面积和为 _(结果保留根号和5、在半径为3的圆中,60°的圆心角所对的劣弧长等于_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,中,以为直径的交于点,于点(1)求证:是的切线;(2)若,求的值2、在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm,求裁剪的面积3、如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m(1)求拱桥的半径(2)有一艘宽为7.8m的货船,船舱顶部为长方形,并高出水面3m,则此货船是否能顺利通过此圆弧形拱桥?并说明理由4、阅读下列材料,完成相应任务:如图,是O的内接三角形,是O的直径,平分交O于点,连接,过点作O的切线,交的延长线于点则下面是证明的部分过程:证明:如图,连接,是O的直径,_(1)为O的切线,(2)由(1)(2)得,_平分,_,任务:(1)请按照上面的证明思路,补全证明过程:_,_,_;(2)若,求的长5、(问题背景)如图1,P是等边ABC内一点,APB150°,则PA2+PB2PC2小刚为了证明这个结论,将PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;(迁移应用)如图2,D是等边ABC外一点,E为CD上一点,ADBE,BEC120°,求证:DBE是等边三角形;(拓展创新)如图3,EF6,点C为EF的中点,边长为3的等边ABC绕着点C在平面内旋转一周,直线AE、BF交于点P,M为PG的中点,EFFG于F,FG43,请直接写出MC的最小值-参考答案-一、单选题1、C【分析】根据圆周角的性质求解即可【详解】解:AOB=140°,根据同弧所对的圆周角是圆心角的一半,可得,ACB=70°,故选:C【点睛】本题考查了圆周角定理,解题关键是明确同弧所对的圆周角是圆心角的一半2、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键3、A【分析】根据圆内接四边形的性质得出A+C180°,再求出C即可【详解】解:四边形ABCD是圆的内接四边形,A+C180°,A:C3:1,C×180°45°,故选:A【点睛】本题考查了元内接四边形对角互补的性质,熟练掌握性质是解题的关键4、D【分析】先根据等边三角形的性质求出OBC的面积,然后由地基的面积是OBC的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OPBC于P,由题意得:BC=4cm,六边形ABCD是正六边形,BOC=360°÷6=60°,又OB=OC,OBC是等边三角形,故选D【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键5、B【分析】连接OA,如图,根据切线的性质得PAO=90°,再利用互余计算出AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90°,P=40°,AOP=50°,OA=OB,B=OAB,AOP=B+OAB,B=AOP=×50°=25°故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系6、D【分析】圆锥的侧面积,确定的值,进而求出圆锥侧面积【详解】解:,故选D【点睛】本题考察了圆锥侧面积解题的关键与难点在于确定的值7、C【分析】首先证明ABD90°,由BOC50°,根据圆周角定理求出A的度数即可解决问题【详解】解:BD是切线,BDAB,ABD90°,BOC50°,ABOC25°,D90°A65°,故选:C【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型8、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60°然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90°,CDB=30°,COB=2CDB=60°,OCE=30°,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键9、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键10、C【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3【详解】解:如图,连接OA,OB,则OA=OB,四边形ABCD是正方形,是等腰直角三角形,正方形ABCD的面积是18,即:故选C【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键二、填空题1、【分析】先根据得出,同理可得出,进而得出,根据扇形的弧长公式计算即可【详解】由题意可得:在中,同理可得:,故答案为:【点睛】本题考查了扇形的弧长计算,以及直角三角形的性质,熟练掌握扇形的弧长计算公式和直角三角形中角所对的直角边等于斜边的一半是解题关键2、36【分析】连接OA,OB,OB交AF于J由正多边形中心角、垂径定理、圆周角定理得出AOB72°,BOF36°,再由等腰三角形的性质得出答案【详解】解:连接OA,OB,OB交AF于J五边形ABCDE是正五边形,OFBC,AOB72°,BOF=AOB36°,AOFAOB +BOF=108°,OAOF,OAFOFA36°故答案为:36【点睛】本题主要考查了园内正多边形中心角度数、垂径定理和圆周角定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,垂径定理常与勾股定理以及圆周角定理相结合来解题正n边形的每个中心角都等于3、【分析】根据弧长公式代入求解即可【详解】解:扇形的半径为5cm,圆心角为120°,扇形的弧长故答案为:【点睛】此题考查了扇形的弧长公式,解题的关键是熟练掌握扇形的弧长公式:,其中n是扇形圆心角的度数,r是扇形的半径4、【分析】设的中点为,连接,先求出,则,然后求出,最后根据求解即可【详解】解:设的中点为,连接,四边形ABCD是矩形,ABC=90°,又CAB=30°,故答案为:【点睛】本题主要考查了矩形的性质,扇形面积公式,解题的关键在于能够根据题意得到5、【分析】弧长公式为l,把半径和圆心角代入公式计算就可以求出弧长【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长,故答案为:【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式三、解答题1、(1)见解析;(2)【分析】(1)根据等腰三角形的性质证得,进而证得OPAC,再根据平行线的性质和切线的判定即可证得结论;(2)连接,根据圆周角定理和等腰三角形的性质可得,再根据含30°角的直角三角形性质求出BP即可求解【详解】(1)证明:,OPAC,又OP是半径,是的切线;(2)解:连接,如图,为直径,AB=AC,CAB=120°,在RtAPB中,【点睛】本题考查等腰三角形的性质、平行线的判定与性质、切线的判定、圆周角定理、含30°角的直角三角形性质、三角形内角和定理,熟练掌握这些知识的联系与运用是解答的关键2、2000 【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式计算出圆锥的侧面积即可【详解】解:根据题意,圆锥的侧面积为:×80×50=2000(cm2)【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长3、(1)6.5米;(2)不能顺利通过,理由见解析【分析】(1)设圆心为O,连接OC,OB,拱桥的半径r米,作出相应图形,然后在RtODB中,利用勾股定理求解即可得;(2)考虑当弦长为7.8时,利用(1)中结论,可得弦心距,即可得出结论【详解】(1)如图所示,设圆心为O,连接OC,OB,拱桥的半径r米,在RtODB中,解得米;(2)当弦长为7.8时,弦心距此货船不能顺利通过此圆弧形拱桥【点睛】题目主要考查圆的基本性质,垂径定理,求弦心距,勾股定理等,理解题意,作出相应辅助线,结合性质定理是解题关键4、(1),;(2)【分析】(1)由是O的直径,得到ODB再由为O的切线,得到,即可推出ODA=BDE,由角平分线的定义可得,由,得到,即可证明;(2)在直角ODE中利用勾股定理求解即可【详解】解:(1)如图,连接,是O的直径,ODB(1)为O的切线,(2)由(1)(2)得,ODA=BDE平分,ODA,故答案为: , , ;(2)为的切线,在中,【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质5、(1)见解析;(2)见解析;(3)21-3【分析】(1)根据PAB绕点A逆时针旋转60°作图即可;(2)由BEC120°得BED60°,由平行线的性质得ADEBED60°,由等边三角形的性质得BACABCACB60°,故可知A、D、B、C共圆,由圆内接四边形对角互补得出ADB120°,故可求出BDE60°,即可得证;(3)由CACECBCF3得A、E、B、F共圆C得出PABCBFCFB,进而得出APFABC60°,作EPF的外接圆Q,则EQF120°,求出EQ,连接QG取中点N,由三角形中位线得MN,以点N为圆心MN为半径作N,连接CN,与N交于点M',即CM最小为CM'=CN-MN,建立平面直角坐标系求出即可【详解】(1)如图1所示,将PAB绕点A逆时针旋转60°得P'AC;(2)BEC120°,BED60°,ADDE,ADEBED60°,ABC是等边三角形,BACABCACB60°,A、D、B、C共圆,如图2所示:ADB120°,ADEBED60°,BDE60°,DBE是等边三角形;(3)如图3,CACECBCF3,A、E、B、F共圆C,PABCBFCFB,ABFABC+CBFPAB+APB,APFABC60°,EPF60°,EF6,作EPF的外接圆Q,则EQF120°,QCEF,EQC60°,PQ=FQ=EQ=ECsin60°=332=23,连接QG取中点N,则MNPQ且MN=12PQ=3,以点N为圆心MN为半径作N,连接CN,与N交于点M',即CM最小为CM'=CN-M'N=CN-MN,以点F为原点建立平面直角坐标系,Q(-3,-3),C(-3,0),G(0,-63),N(-32,-532),CN=(32)2+(532)2=21,CM最小为CN-MN=21-3【点睛】本题考查等边三角形的判定与性质,解三角函数以及圆的性质,根据题意作出圆是解题的关键