人教版八年级数学下册第十八章-平行四边形专题训练练习题(无超纲).docx
-
资源ID:32532495
资源大小:554.76KB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版八年级数学下册第十八章-平行四边形专题训练练习题(无超纲).docx
人教版八年级数学下册第十八章-平行四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD2、如图,点E是ABC内一点,AEB90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D93、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90°B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC4、如图,在长方形ABCD中,AB10cm,点E在线段AD上,且AE6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上以vcm/s的速度由点B向点C运动,当EAP与PBQ全等时,v的值为()A2B4C4或D2或5、如图,在菱形中,P是对角线上一动点,过点P作于点E于点F若菱形的周长为24,面积为24,则的值为( )A4BC6D6、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24<m<39B14<m<62C7<m<31D7<m<127、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B,AB与DC相交于点E,则下列结论正确的是 ( )ADABCABBACDBCD CADAEDAECE8、顺次连接对角线互相垂直的四边形的各边中点,所形成的新四边形是()A菱形B矩形C正方形D三角形9、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km10、如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E若AB4,BC8,则图中阴影部分的面积为()A8B10C12.5D7.5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ACB90°,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC7,空白部分面积为16,则图中阴影部分的面积是 _2、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB8,AD16,BE4,则MC的长为_3、如图,在中,为上的两个动点,且,则的最小值是_4、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点以此类推,则正方形的边长为_ 5、如图,在 中, 于点 , 于点 若 , ,且 的周长为40,则 的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上(1)在方格纸中画出以AB为对角线的正方形AEBF,点E、F在小正方形的顶点上;(2)在方格纸中画出以CD为斜边的等腰直角三角形CDM,连接BM,并直接写出BM的长2、如图,四边形ABCD是菱形,DEAB、DFBC,垂足分别为E、F求证:BEBF3、如图,已知在RtABC中,ACB90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CFDE于点F,且DFEF (1)求证:ADCE (2)若CD5,AC6,求AEB的面积4、如图,在锐角ABC内部作出一个菱形ADEF,使A为菱形的一个内角,顶点D、E、F分别落在AB、BC、CA边上(要求:尺规作图,不写作法,保留作图痕迹)5、如图,在中,过点作于点,点在边上,连接,(1)求证:四边形是矩形;(2)若,求证:平分-参考答案-一、单选题1、B【解析】【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出2、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键3、D【解析】【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90°,正确,故A不符合题意;当ABCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.4、D【解析】【分析】根据题意可知当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP,当AP=BP时,AEPBQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可【详解】解:当EAP与PBQ全等时,有两种情况:当EA=PB时,APEBQP(SAS),AB=10cm,AE=6cm,BP=AE=6cm,AP=4cm,BQ=AP=4cm;动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,点P和点Q的运动时间为:4÷2=2s,v的值为:4÷2=2cm/s;当AP=BP时,AEPBQP(SAS),AB=10cm,AE=6cm,AP=BP=5cm,BQ=AE=6cm,5÷2=2.5s,2.5v=6,v=故选:D【点睛】本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键5、A【解析】【分析】连接BP,通过菱形的周长为24,求出边长,菱形面积为24,求出的面积,然后利用面积法,即可求出的值【详解】解:如图所示,连接BP,菱形ABCD的周长为24,又菱形ABCD的面积为24, ,故选:A【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系6、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键7、D【解析】【分析】根据翻折变换的性质可得BAC=CAB,根据两直线平行,内错角相等可得BAC=ACD,从而得到ACD=CAB,然后根据等角对等边可得AE=CE,从而得解【详解】解:矩形纸片ABCD沿对角线AC折叠,点B的对应点为B,BAC=CAB,ABCD,BAC=ACD,ACD=CAB,AE=CE,结论正确的是D选项故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键8、B【解析】【分析】先画出图形,再根据三角形中位线定理得到所得四边形的对边平行且相等,那么其必为平行四边形,然后根据邻边互相垂直得出四边形是矩形【详解】解:如图,、分别是、的中点,四边形是平行四边形,平行四边形是矩形,又与不一定相等,与不一定相等,矩形不一定是正方形,故选:B【点睛】本题考查了三角形中位线定理、矩形的判定等知识点,熟练掌握三角形中位线定理是解题关键9、D【解析】【详解】根据直角三角形斜边上的中线性质得出CMAB,即可求出CM【解答】解:公路AC,BC互相垂直,ACB90°,M为AB的中点,CMAB,AB6km,CM3km,即M,C两点间的距离为3km,故选:D【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半10、B【解析】【分析】利用折叠的性质可得ACFACB,由ADBC,可得出CADACB,进而可得出AECE,根据矩形性质可得AB=CD=4,BC=AD=8,D=90°,设AECE=x,则ED8x,在RtCDE中,利用勾股定理可求出x的值,再利用三角形的面积公式即可求出ACE的面积,则可得出答案【详解】解:由折叠的性质,ACFACBADBC,CADACB,CADACF,AECE四边形ABCD为矩形,AB=CD=4,BC=AD=8,D=90°,设AECE=x,则ED8x,在RtCDE中,根据勾股定理得,即42+(8x)2x2,x5,图中阴影部分的面积SACE AEAB= ×5×410故选:B【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的面积,利用勾股定理求出AE的长是解题的关键二、填空题1、【解析】【分析】根据余角的性质得到,根据全等三角形的性质得到,推出,根据勾股定理得到,解方程组得到,接着由图可知空白部分为重叠部分,阴影部分为非重叠部分,所以2倍的空白部分与阴影部分面积和等于三个正方形与三角形面积和结合即可得出结论依此即可求解【详解】解:如图,四边形是正方形,即,在中,阴影部分的面积和= 三个正方形面积+三角形面积-2倍空白部分面积=故答案为:【点睛】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用2、10【解析】【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,ANMENM,AM=EM,矩形ABCD,B=A=D=90°, FEAD,AFE=B=A=90°,四边形ABEF为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键3、【解析】【分析】过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,MDAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90°,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键4、【解析】【分析】利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长【详解】解:A,B,C,D是正方形各边的中点,正方形ABCD的边长为,即AB=,解得:,=2,同理=2,=4 ,=,的边长为故答案为:【点睛】本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目5、48【解析】【分析】根据题意可得:,再由平行四边形的面积公式整理可得:,根据两个等式可得:,代入平行四边形面积公式即可得【详解】解:ABCD的周长:,于E,于F,整理得:,ABCD的面积:,故答案为:48【点睛】题目主要考查平行四边形的性质及运用方程思想进行求解线段长,理解题意,熟练运用平行四边形的性质及其面积公式是解题关键三、解答题1、(1)见详解;(2)见详解【分析】(1)根据勾股定理求出AB的长,以AB为对角线的正方形AEBF,根据正方形的性质求出正方形边长AE=,根据勾股定理构造直角三角形横1竖3,或横3竖1,利用点A平移找到点E,点F即可完成求解;(2)根据勾股定理求出CD的长,CDM为等腰直角三角形,设CM=DM=x,再利用勾股定理,根据勾股定理构造横1竖2,或横2竖1直角三角形,利用点C平移得到点M,即可得到答案【详解】(1)根据勾股定理AB=,以AB为对角线的正方形AEBF,S正方形=,正方形AEBF的边长为AE,AE2=10,AE=,根据勾股定理可知构造横1竖3或横3竖1的直角三角形作线段AE、AF,点A向下平移1格,再向左平移3格得点E,点A向右平移1格,再向下平移3格得点F,连结AE,BE,BF,AF,则正方形ABEF作图如下:(2)根据勾股定理 ,CDM为等腰直角三角形,设CM=DM=x,根据勾股定理,即,解得,CM=DM=,根据勾股定理构造横1竖2,或横2竖1直角三角形作线段CM、DM,点C向右移动2格,再向上移动1格得点M,连结CM,DM,则CDM为所求如图【点睛】本题考查了正方形性质、正方形面积,边长,等腰直角三角形、腰长,勾股定理,一元二次方程,平移;解题的关键是熟练掌握正方形性质、等腰直角三角形性质,勾股定理,一元二次方程,平移,从而完成求解2、见解析【分析】根据菱形的性质,可得ADDC,ABBC,AC从而得到AEDCFD从而得到AECF即可求证【详解】证明:四边形ABCD是菱形, ADDC,ABBC,ACDEAB,DFBC,AEDCFD90°AEDCFD(AAS)AECFABAEBCCF即:BEBF【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键3、(1)见解析;(2)39【分析】(1)首先根据CFDE,DFEF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜边的一半得到CDAD,即可证明ADCE;(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算【详解】(1)证明:DFEF 点F为DE的中点 又CFDE CF为DE的中垂线CDCE又在RtABC中,ACB90°,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE=5 AB=10 在RtABC中,BC=8EB=EC+BC=13 【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式4、见解析【分析】根据基本作图先作BAC的平分线AE,交BC于E,再利用基本作图作AE的垂直平分线DF交AB于D,交AC与F,连接DE,EF,则菱形ADEF为所求,然后证明即可【详解】解:先作BAC的平分线AE,交BC于E,作AE的垂直平分线DF交AB于D,交AC与F,连接DE,EF,证明:DF是AE的垂直平分线,AD=DE,AF=EF,DEA=DAE,FAE=FEA,AE平分BAC,DAE=FAE,DEA=DAE=FAE,FEA=FAE=DAE,DEAF,EFAD,四边形ADEF为平行四边形,AD=DE,四边形ADEF为菱形,如图,则菱形ADEF就是所求作的图形【点睛】本题考查尺规作菱形,基本作图角平分线,线段垂直平分线,掌握尺规作菱形的方法,基本作图角平分线,线段垂直平分线,菱形判定是解题关键5、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,即 ,四边形是平行四边形,四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 在中,由勾股定理,得,即平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.