欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年北师大版八年级数学下册第一章三角形的证明同步训练试题(含答案解析).docx

    • 资源ID:32536342       资源大小:655.97KB        全文页数:30页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年北师大版八年级数学下册第一章三角形的证明同步训练试题(含答案解析).docx

    北师大版八年级数学下册第一章三角形的证明同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我们称网格线的交点为格点如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得ABC是等腰直角三角形,则满足条件的格点C的个数是()A3B4C5D62、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D193、ABC中,A,B,C所对的边分别是a,b,c下列条件中不能说明ABC是直角三角形的是( )Ab2- c2=a2Ba:b:c= 5:12:13CA:B:C = 3:4:5DC =A -B4、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米5、如图,在ABC中, ABC和ACB的平分线相交于点O,过点O作EFBC交AB于E,交AC于F,过点O作ODAC于D,下列四个结论:EF=BE+CF; ;点O到ABC各边的距离相等;设OD=m, ,则SAEF=mn其中正确的结论个数是( )A1个B2个C3个D4个6、如图,在ABC中,已知ABAC3,BC4,若D,E是边BC的两个“黄金分割”点,则ADE的面积为()A104B35CD2087、下列以a,b,c为边的三角形不是直角三角形的是( )Aa1,b1,c2Ba2,b3,c13Ca3,b5,c7Da6,b8,c108、如图,在ABC中,BAC45°,E是AC中点,连接BE,CDBE于点F,CDBE若AD,则BD的长为()A2B2C2D39、如图,在ABC中,ABAC6cm,AD,CE是ABC的两条中线,CE4cm,P是AD上的一个动点,则BP+EP的最小值是()A3cmB4cmC6cmD10cm10、如图,已知在 A B C中,C D是A B边上的高线,B E平分A B C,交C D于点E, B C10, D E3,则 B C E的面积等于( ) A6B9C15D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点P是等边ABC内的一点,PA6,PB8,PC10,若点P是ABC外的一点,且PABPAC,则APB的度数为_2、如图,在ABC中,ABAC,BAC90°,点D、点E在直线BC上,点F为AE上一点,连接BF,分别交AD、AC于点G、点H,若BADCAE,AGHE,AF+ADBF,AC3,则AE的长为 _3、已知直角三角形ABC的三条边长分别为3,4,5,在ABC所在平面内画一条直线,将ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画_条4、如图,ABC中,A68°,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则EDF_度5、平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的 _三、解答题(5小题,每小题10分,共计50分)1、在5×5的正方形网格中,点A,B,C,D,E均在格点上(1)图中根据 来判断ABCBED;(2)图中BC与DE的数量关系是 ,位置关系是 ;(3)ABC是以AB为腰的等腰直角三角形,请在图中用字母C标出正确的点C位置,使点C在格点上,画出所有可能的等腰直角三角形2、在长方形ABCD中,截取如图所示的阴影部分,已知EC5,CF5,FG4,EG3,EGF90°(1)连接EF,求证:FEC90°;(2)求出图中阴影部分的面积3、如图所示,平面直角坐标系中,直线AB交x轴于点B(3,0),交y轴于点A(0,1),直线x=1交AB于点D,P是直线x=1上一动点,且在点D上方,设P(1,n)(1)求直线AB的解析式;(2)求ABP的面积(用含n的代数式表示);(3)点C是y轴上一点,当SABP=2时,BPC是等腰三角形,满足条件的点C的个数是_个(直接写出结果);当BP为等腰三角形的底边时,求点C的坐标4、如图,点D为锐角ABC的平分线上一点,点M在边BA上,点N在边BC上,BMD+BND180°试说明:DMDN5、设两个点A、B的坐标分别为,则线段AB的长度为:举例如下:A、B两点的坐标是,则A、B两点之间的距离请利用上述知识解决下列问题:(1)若,且,求x的值;(2)已知ABC,点A为、点B为、点C为,求ABC的面积;(3)求代数式的最小值-参考答案-一、单选题1、A【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的格点C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的格点C点有3个故共有3个点,故选:A【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想2、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键3、C【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可【详解】A. b2- c2=a2,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;B. a:b:c= 5:12:13,设,则,则,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;C. A:B:C = 3:4:5,设A、B、C分别是,则,则,所以ABC是不直角三角形,故符合题意; D. C =A -B,又A+B+C=180°,则A=90°,是直角三角形,故不符合题意,故选C.【点睛】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4、D【分析】利用勾股定理求出CD的长,进而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理5、C【分析】根据ABC和ACB的平分线相交于点O和三角形的内角和等于180°,可得;再由ABC和ACB的平分线相交于点O和EFBC,可得EOB=OBE,FOC=OCF,从而得到BE=OE,CF=OF,进而得到;过点O作OMAB于M,作ONBC于N,连接OA,根据角平分线的性质定理,可得点到各边的距离相等;又由AE+AF=n,可得SAEF=SAOE+SAOF=mn,即可求解【详解】解:在ABC中,ABC和ACB的平分线相交于点O,OBC=ABC,OCB=ACB,ABC+ACB=180°-A,OBC+OCB=(ABC+ACB)=90°-ABOC=180°-(OBC+OCB)=90°+A,故正确;在ABC中,ABC和ACB的平分线相交于点O,OBC=OBE,OCB=OCF,EFBC,OBC=EOB,OCB=FOC,EOB=OBE,FOC=OCF,BE=OE,CF=OF,EF=OE+OF=BE+CF,故正确;过点O作OMAB于M,作ONBC于N,连接OA,又在ABC中,ABC和ACB的平分线相交于点O,ON=OD=OM=m,即点O到ABC各边的距离相等,故正确;AE+AF=n,SAEF=SAOE+SAOF=AE×OM+AF×OD=OD×(AE+AF)=mn,故错误;综上所述,正确的结论有3个故选:C【点睛】本题主要考查了角平分线性质定理,等腰三角形的性质等知识,熟练掌握角平分线上的点到角两边的距离相等是解题的关键6、A【分析】过点A作AFBC于点F,由题意易得,再根据点,是边的两个黄金分割点,可得,根据勾股定理可得,进而可得,然后根据三角形的面积计算公式进行求解【详解】解:过点A作AFBC于点F,如图所示:,在RtAFB中,点,是边的两个黄金分割点,DF=EF,;故选:A【点睛】本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键7、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可如果有这种关系,这个就是直角三角形【详解】解:、,该三角形是直角三角形,故此选项不符合题意;、,该三角形是直角三角形,故此选项不符合题意;、,该三角形不是直角三角形,故此选项符合题意;、,该三角形是直角三角形,故此选项不符合题意;故选:C【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断8、B【分析】过点C作CNAB于点N,连接ED,EN,利用SAS证明DCEBEN,可得EDNB,CEDENB135°,得ADE是等腰直角三角形,可得ADDNBN,进而可得结果【详解】解:如图,过点C作CNAB于点N,连接EN,CNA90°,BAC45°,NCAA45°,ANCN,点E是AC的中点,ANECNE45°,CENAEN90°,CEF+FEN90°,CDBE,CFE90°,CEF+FCE90°,DCEBEN,在DCE和BEN中,DCEBEN(SAS),EDNB,CEDENB135°,AED45°AACN,ADDE,AECE,AE=EN,ADDN,ADDNBN,BD2AD2故选B【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形求解9、B【分析】连接CE交AD于点P,则BP+EP的最小值为CE的长【详解】如图,连接CE交AD于点P,ABAC,AD是BC的中线,ADBC,BPCP,BP+EPCP+EPCE,BP+EP的最小值为CE的长,CE4cm,BP+EP的最小值为4cm,故选:B【点睛】本题是典型的将军饮马问题,考查了等腰三角形三线合一的性质和两点间线段最短知识,关键是把BP+EP的最小值转化为CP+EP的最小值,从而根据两点间线段最短解决最小值的问题10、C【分析】过E作EFBC于F,根据角平分线性质得出EFDE3,根据三角形面积公式求出即可【详解】解:过E作EFBC于F,CD是AB边上的高线,BE平分ABC,EFDE3,BC10,BCE的面积为×BC×EF15,故选:C【点睛】本题考查了三角形的面积和角平分线性质,能根据角平分线性质求出DEEF是解此题的关键,注意:角平分线上的点到角两边的距离相等二、填空题1、150°【分析】如图:连接PP,由PACPAB可得PAPA、PABPAC,进而可得APP为等边三角形易得PPAPAP6;然后再利用勾股定理逆定理可得BPP为直角三角形,且BPP90°,最后根据角的和差即可解答【详解】解:连接PP,PACPAB,PAPA,PABPAC,PAPBAC60°,APP为等边三角形,PPAPAP6;PP2+BP2BP2,BPP为直角三角形,且BPP90°,APB90°+60°150°故答案为:150°【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键2、【分析】过点C作CIBE交AE于I,即可证明ABDACI得到AI=AD,ADB=AIC,BD=CI;延长FA到K使得AK=AD=AI,连接KB,KD,DI,可证ADK和ADI都是等腰直角三角形,从而推出DIC=KDB;证明KDBDIC得到KBD=DCI=90°,得到BKE+E=90°,KBF+EBF=90°,由BF=AF+AD,得到BF=AF+AK=KF,可推出E=EBF,由三角形外角的性质得到BFA=E+EBF=2E,再由AGH=E,GAF=90°,可得E=30°,过点A作AMBE于M,然后利用勾股定理求解即可【详解】解:如图所示,过点C作CIBE交AE于I,ICD=90°,AB=AC,BAC=90°,ABC=ACB=45°,ACI=45°,ABD=ACI,在ABD和ACI中, ,ABDACI(ASA),AI=AD,ADB=AIC,BD=CI,延长FA到K使得AK=AD=AI,连接KB,KD,DI,AKD=ADK,ADI=AID,AKD+KDI+AID=180°,ADK+ADI=90°,即KDI=90°,BAD=CAE,BAC=90°,BAD+CAD=CAE+CAD=90°,即DAI=90°,ADK和ADI都是等腰直角三角形,DKI=DIK=ADK=45°,KD=ID,BDK+ADK=DIK+DIC,DIC=KDB,在KDB和DIC中,KDBDIC(SAS),KBD=DCI=90°,BKE+E=90°,KBF+EBF=90°,BF=AF+AD,BF=AF+AK=KF,BKF=KBF,E=EBF,BFA=E+EBF=2E,AGH=E,GAF=90°,3E=90°,E=30°,过点A作AMBE于M,ACM=45°,MAC=45°,ACM=MAC,AM=CM,故答案为:【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,三角形外角的性质,直角三角形两锐角互余,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件3、6【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可【详解】解:如图所示:当BC2=CC2,AC1=AC,BC=BC3,BC=CC4,BC=CC5,C6A=C6B都能得到符合题意的等腰三角形故答案为:6【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键4、68【分析】根据线段垂直平分线的性质得到EBED,FDFC,则EDBB,FDCC,从而可以得到EDB+FDCB+C,再由EDF180°(EDB+FDC),A180°(B+C),即可得到EDFA68°【详解】解:BD、CD的垂直平分线分别交AB、AC于点E、F,EBED,FDFC,EDBB,FDCC,EDB+FDCB+C,EDF180°(EDB+FDC),A180°(B+C),EDFA68°故答案为:68【点睛】本题主要考查了线段垂直平分线的性质,三角形内角和定理,等腰三角形的性质与判定,熟知线段垂直平分线的性质是解题的关键5、角平分线【分析】根据角平分线的判定可知【详解】解:根据角平分线的判定可知:平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的角平分线,故答案为:角平分线【点睛】本题考查了角平分线的判定,解题关键是明确在角的内部(包括顶点)到角的两边距离相等的点在这个角的平分线上三、解答题1、(1)SAS;(2)BC=DE,BCDE;(3)画图见详解【分析】(1)由网格信息可知AB=BE,AC=BD,BAC=EBD,故ABCBED为边角边全等(2)由(1)可知BC=DE,过D点作BC平行线DF,连接FE,再由网格数得出DF、DE、FE的长度,满足勾股定理,即推出BCDE(3)如图所示,共有三种C点满足ABC是以AB为腰的等腰直角三角形【详解】(1)根据网格中的图象可知AB=BE,AC=BD,BAC=EBDABCBED为SAS全等(2)由(1)知ABCBEDBC=DE过D点作BC平行线DF,连接FE点A,B,C,D,E均在格点上又为直角三角形,FDE=90°FD/BCBCDE(3)若是以AB为等腰直角三角形的腰,即有AB=BC,ABC=90°或AB=AC,BAC=90°两种情况又,ABC=90°,C点有如图两种位置而,BAC=90°,C点有如图一种位置【点睛】本题考查了网格图中的直角三角形的判断以及画等腰三角形,全等三角形的判定条件,运用数形结合的思想是解题的关键2、(1)见解析;(2)【分析】(1)先求EF,再利用勾股定理的逆定理得出EFC为直角三角形,即可得证;(2)先求出和的面积,再利用得出阴影部分的面积【详解】解:(1)EGF90°,根据勾股定理得:EF=,EFC为直角三角形,FEC=90°;(2),【点睛】本题考查了勾股定理及其逆定理,灵活运用勾股定理是解题的关键3、(1)y=x+1;(2)n1;(3)3;C(0,1)【分析】(1)设直线AB的解析式为y=kx+b,用待定系数法求解;(2)先表示出PD的长,然后根据ABP的面积=APD的面积+BPD的面积=求解;(3)先根据SABP=2求出n,求出BP的长,然后可确定点C的位置;设C(0,c),根据PC=BC可求出c的值【详解】解:(1)设直线AB的解析式为y=kx+b,把A(0,1),B(3,0)代入,得,解得,;(2)当x=-1时,P(1,n),PD=,ABP的面积=APD的面积+BPD的面积=;(3)由题意得=2,解得n=2,P(-1,2),PE=2,BE=3-1=2,BP=,BPOB,如图,以点P为顶点的等腰三角形有2个,以点C为顶点的等腰三角形有1个,所以满足条件的点C的个数是3个,故答案为:3;设C(0,c),P(-1,2),B(3,0),PC2=,BC2=,当PC=BC时,c2-4c+5= c2+9,c=-1,C(0,-1)【点睛】本题考查了待定系数法求一次函数解析式,坐标与图形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握待定系数法、勾股定理是解答本题的关键4、见解析【分析】过点D作DEAB于点E,DFBC于点F构造全等三角形EMDFND,根据全等三角形的对应边相等推知DMDN【详解】解:过点D作DEAB于点E,DFBC于点FDEBDFB90°又BD平分ABC,DEDFBMD+DME180°,BMD+BND180°,DMEBND在EMD和FND中,EMDFND(AAS)DMDN【点睛】本题考查了角的平分线,三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键5、(1)或(2)ABC的面积为5(3)13【分析】(1)直接利用两点之间的距离公式计算即可;(2)利用两点之间的距离公式可求得AB、BC、AC的线段长度,利用勾股定理的逆定理可判断出ABC为直角三角形,然后利用直角三角形的面积计算公式计算即可;(3)所求代数式可以看成是点与点的距离和点与点的距离之和,最短为点与点的距离之和,依此求解(1)解:又,且,即或(2)解:,ABC为直角三角形,(3)解:该代数式可看成是点与点的距离和点与点的距离之和,当点在点与点连接的线段上时最短为,故的最小值为13【点睛】本题考查两点之间的距离,勾股定理和逆定理的应用,最短路线问题(1)中理解题意,正确计算是解题关键;(2)中能计算三条线段长度,并判断三角形为直角三角形是解题关键;(3)中需注意因为带着平方,所以点和点不是唯一的,但因为点的纵坐标为0,所以必须保证上述两点的纵坐标一正一负,点才有可能在它们连接后的线段上

    注意事项

    本文(2022年北师大版八年级数学下册第一章三角形的证明同步训练试题(含答案解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开