2022年北师大版八年级数学下册第四章因式分解月考练习题(名师精选).docx
-
资源ID:32536367
资源大小:362.11KB
全文页数:17页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年北师大版八年级数学下册第四章因式分解月考练习题(名师精选).docx
北师大版八年级数学下册第四章因式分解月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,能用完全平方公式分解因式的是()ABCD 2、三角形的三边长分别为a、b、c,如果a、b、c满足,则这个三角形是( )A等边三角形B直角三角形C等腰三角形D等腰直角三角形3、下列各式能用完全平方公式进行因式分解的是( )A9x2-6x+1Bx2+x+1Cx2+2x-1Dx2-94、可以被24和31之间某三个整数整除,这三个数是( )A25,26,27B26,27,28C27,28,29D28,29,305、已知x2x6(xa)(xb),则( )Aab6Bab6Cab6Dab66、若、为一个三角形的三边长,则式子的值( )A一定为正数B一定为负数C可能是正数,也可能是负数D可能为07、已知,则( )A0B1C2D38、已知abc为ABC的三条边边长,且满足等式a22b2c22ab2bc0,则ABC的形状为( )A等腰三角形B等边三角形C直角三角形D钝角三角形9、若,则的值为( )ABCD10、多项式分解因式的结果是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_2、如图,将长方形纸片沿折叠,使点A落在边上点处,点D的对应点为,连接交边于点E,连接,若,点为的中点,则线段的长为_3、将4a28ab+4b2因式分解后的结果为_4、把多项式2m4mx2x分解因式的结果为_5、分解因式:x27xy18y2_三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)ax28ax16a; (2)x481x2y22、分解因式:4xy24x2yy33、将下列多项式进行因式分解:(1);(2)4、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-13-3,所以3×3是9的最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值5、分解因式:(1)3a26a+3 (2)(x2+y2)24x2y2-参考答案-一、单选题1、D【分析】根据完全平方公式法分解因式,即可求解【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键2、A【分析】将等式因式分解为的形式,然后求得b=c,从而判断三角形的形状【详解】解:,这个三角形是等边三角形故选A【点睛】此题考查了因式分解的应用注意掌握因式分解的步骤,分解要彻底3、A【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键4、B【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.5、B【分析】先利用十字相乘法去掉括号,再根据等式的性质得ab1,ab6【详解】解:x2x6(xa)(xb),x2x6x2(ab)xab,ab1,ab6;故选:B【点睛】本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键6、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解【详解】解:原式=(a-c+b)(a-c-b),两边之和大于第三边,两边之差小于第三边,a-c+b0,a-c-b0,两数相乘,异号得负,代数式的值小于0故选:B【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和第三边,任意两边之差第三边7、A【分析】两个特殊的公式:,根据公式进行变形,从而可得答案.【详解】解: , 故选A【点睛】本题考查的是完全平方式的应用,因式分解的应用,掌握“”是解题的关键.8、B【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据三角形的三边关系得到,从而得到答案【详解】解:a22b2c22ab2bc0;为等边三角形故选B【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,以及灵活利用因式分解建立与方程之间的关系来解决问题9、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算【详解】解:,解得,所以故选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键10、B【分析】先提取公因式a,再根据平方差公式进行二次分解平方差公式:a2-b2=(a+b)(a-b)【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y)故选:B【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底二、填空题1、【分析】利用十字相乘法分解因式即可得【详解】解:因为,且是的一次项的系数,所以,故答案为:【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题关键2、【分析】连接,勾股定理求得,进而证明,设,根据,以及三边关系建立方程组,解方程组求解即可【详解】解:如图,连接,折叠,四边形是长方形,,,设则是的中点,在中, 在中,即解得,又设在中即又由可得将代入得-得解得即故答案为:【点睛】本题考查了勾股定理,折叠问题,因式分解,三角形全等的性质与判定,解二元一次方程组,掌握折叠的性质是解题的关键3、【分析】先提取公因式4,再利用完全平方式即可求出结果【详解】故答案为:【点睛】本题考查因式分解掌握提公因式和公式法进行因式分解是解答本题的关键4、【分析】根据提公因式法因式分解,提公因式因式分解即可【详解】解:2m4mx2x故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键5、【分析】根据十字相乘法因式分解即可【详解】x27xy18y2,故答案为:【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键三、解答题1、(1)a(x4)2 ;(2)x2(x9y)(x9y)【分析】(1)先提取公因式 再利用完全平方公式分解因式即可;(2)先提取公因式 再利用平方差公式分解即可.【详解】解:(1)原式a(x28x16) a(x4)2 (2)原式x2(x281y2) x2(x9y)(x9y)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键.2、-y(2x-y)2【分析】先提取公因式-y,再利用完全平方公式分解因式即可得答案【详解】4xy24x2yy3=-y(4x2-4xy+y2)=-y(2x-y)2【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止3、(1);(2)【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可【详解】解:(1)原式;(2)原式【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法4、(1);1;(2);【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键5、(1);(2)【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可【详解】(1),;(2),【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键