2022年人教版八年级数学下册第十七章-勾股定理必考点解析试题(精选).docx
-
资源ID:32536643
资源大小:568.39KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版八年级数学下册第十七章-勾股定理必考点解析试题(精选).docx
人教版八年级数学下册第十七章-勾股定理必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短路程为()A10米B12米C15米D20米2、如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(ab),则下列说法:a2+b2=25,ab=1,ab=12,a+b=7正确的是()ABCD3、下列条件:;,能判定是直角三角形的有( )A4个B3个C2个D1个4、在ABC中,C90°,BC2,sinA,则边AC的长是()AB3CD5、在棱长为1的正方体中,顶点A,B的位置如图所示,则A、B两点间的距离为( )A1BCD6、如图,RtABC中,C90°,AD平分BAC交BC于点D,DEAB交AC于点E,已知CE3,CD4,则AD长为()A7B8CD7、在中,的对边分别为,则c的长为( )A2BC4D4或8、我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b(b>a),则(a+b)2的值为( )A24B25C49D139、如图,ABC中,C90°,AD平分BAC交BC于点D,DEAB于E,若AB10cm,AC6cm,则BED周长为( )A10cmB12cmC14cmD16cm10、以下列长度的三条线段为边,能组成直角三角形的是( )A4,5,6B8,15,17C2,3,4D1,3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是_2、如图,在ABC中,C90°,AC12cm,BC16cm,D、E分别是边BC、AB上的任意一点,把ABC沿着直线DE折叠,顶点B的对应点是B,如果点B和顶点A重合,则CD_cm3、把由5个小正方形组成的十字形纸板(如图)剪开,使剪成的若干块能够拼成一个大正方形最少只需要剪_刀4、如图,在RtABC中,B90°,A60°,AB,E为AC的中点,F为AB上一点,将AEF沿EF折叠得到DEF,DE交BC于点G,若BFD30°,则CG_5、如图,在一次夏令营活动中,小明从营地A出发,沿北偏东方向走了到达B地,然后再沿北偏西方向走了到达目的地C,则A、C两地之间的距离为_m三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC和DEB中,ACBE,C90°,ABDE,点D为BC的中点, (1)求证:ABCDEB (2)连结AE,若BC4,直接写出AE的长2、一架云梯长25m,如图所示斜靠在一而墙上,梯子底端C离墙7m(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向滑动了多少米?3、如图,ABC中,C90°,BC6,ABC的平分线与线段AC交于点D,且有ADBD,点E是线段AB上的动点(与A、B不重合),联结DE,设AEx,DEy(1)求A的度数;(2)求y关于x的函数解析式(无需写出定义域);(3)当BDE是等腰三角形时,求AE的长4、如图,有一张四边形纸片,经测得,(1)求、两点之间的距离(2)求这张纸片的面积5、如图,RtABC中的顶点A,C分别在平面直角坐标系的x轴,y轴上,且ACB=90°,AC=8,BC=4当OA=OC时,求四边形OABC的面积-参考答案-一、单选题1、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15,则蚂蚁爬行的最短路程为15米故选:C【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算2、D【分析】由大的正方形的边长为结合勾股定理可判断,由小的正方形的边长为 结合小正方形的面积可判断,再利用 结合可判断,再由可判断,从而可得答案.【详解】解:由题意得:大正方形的边长为 故符合题意;用a、b表示直角三角形的两直角边(ab),则小正方形的边长为: 则(负值不合题意舍去)故符合题意; 而 故符合题意; (负值不合题意舍去)故符合题意;故选D【点睛】本题考查的是以勾股定理为背景的几何面积问题,同时考查了完全平方公式的应用,熟练的应用完全平方公式的变形求值是解本题的关键.3、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论【详解】解:即,ABC是直角三角形,故符合题意;A+B+C=180°,C=AB,A+B+AB=180°,即A=90°,ABC是直角三角形,故符合题意;,设a=,b=,c=,则,ABC不是直角三角形,故不合题意;,C=×180°=75°,故不是直角三角形;故不合题意综上,符合题意的有,共2个,故选:C【点睛】本题主要考查了直角三角形的判定方法如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形4、A【分析】先根据BC2,sinA求出AB的长度,再利用勾股定理即可求解【详解】解:sinA,BC2,AB3,AC,故选:A【点睛】本题考查正弦的定义、勾股定理等知识,是重要考点,难度较小,掌握相关知识是解题关键5、C【分析】根据RtABC和勾股定理可得出AB两点间的距离【详解】解:在RtABC中,AC1,BC,可得:AB,故选:C【点睛】本题考查了勾股定理,得出正方体上A、B两点间的距离为直角三角形的斜边是解题关键6、D【分析】根据角平分线的定义以及平行线的性质可得,根据勾股定理求出的长度,然后根据勾股定理计算即可【详解】解:AD平分BAC交BC于点D,DEAB,CE3,CD4,C90°,故选:D【点睛】本题考查了角平分线的定义,平行线的性质,等角对等边判定等腰三角形,勾股定理等知识点,根据题意得出是解本题的关键7、D【分析】根据是直角边或斜边分别根据勾股定理计算即可;【详解】在中,的对边分别为,当是一条直角边时,;当是斜边时,;c的长为4或故选D【点睛】本题主要考查了勾股定理的应用,准确计算是解题的关键8、C【分析】根据勾股定理,可得 ,再由四个全等的直角三角形的面积之和等于大正方形的面积减去小正方形的面积,可得 ,然后利用完全平方公式,即可求解【详解】解:根据题意得: ,四个全等的直角三角形的面积之和为 , ,即 , 故选:C【点睛】本题主要考查了勾股定理,完全平方公式的应用,勾股定理,完全平方公式是解题的关键9、B【分析】根据平分线的性质得出,由定理证明,得出,即可求出,由勾股定理算出,,计算即可得出答案【详解】,平分,在与中,在中,故选:B【点睛】本题考查角平分线的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识点是解题的关键10、B【分析】根据勾股定理的逆定理:若三角形三边分别为a,b,c,满足,则该三角形是以c为斜边的直角三角形,由此依次计算验证即可【详解】解:A、,则长为4,5,6的线段不能组成直角三角形,不合题意;B、,则长为8,15,17的线段能组成直角三角形,符合题意;C、,则长为2,3,4的线段不能组成直角三角形,不合题意;D、,则长为1,3的线段不能组成直角三角形,不合题意;故选:B【点睛】本题考查勾股定理的逆定理,掌握并熟练运用勾股定理的逆定理是解题关键二、填空题1、15cm【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求【详解】解:如图所示:圆柱的高等于12cm,底面上圆的周长等于18cm,AC=9cm,BC=12cm,蚂蚁沿圆柱侧面爬行的最短路程是15cm;故答案为:15cm【点睛】本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键2、【分析】设CDxcm,则BD(16x)cm;根据勾股定理列出关于x的方程,解方程即可解决问题【详解】解:设CDxcm,则BD(16x)cm,由折叠得:ADBD16x,在RtACD中,由勾股定理得:CD2+AC2AD2,x2+122(16x)2,解得:x,即CD(cm)故答案为:【点睛】该题主要考查了翻折变换的性质;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答3、2【分析】利用使剪成的若干块能够拼成一个大正方形,结合图形得出即可【详解】解:如图所示:由5个小正方形组成的十字形纸板(如图1)剪开,使剪成的若干块能够拼成一个大正方形,正方形的边长为:最少只需剪2刀故答案为:2【点睛】此题主要考查了图形的剪拼,勾股定理及无理数的计算,结合利用勾股定理得到四边形四条边相等是解题关键4、2【分析】由直角三角形的性质求出,由折叠的性质得出,可求出,由勾股定理可求出的长【详解】解:,为的中点,将沿折叠得到,设,则,解得,故答案为:2【点睛】本题考查了折叠的性质,直角三角形的性质,勾股定理,三角形的内角和定理等知识,熟练掌握折叠的性质是解题的关键5、100【分析】根据题意点C位于点B的西偏北60方向,再根据平行线的性质可得点A位于点B的西偏南30方向,从而可得ABBC,由勾股定理即可求得AC的长【详解】如图所示,CBH=30,DAB=60BAE=90DAB=30,CBF=90CBH=60FBAEFBA=BAE=30ABC=CBF+FBA=60+30=90在RtABC中,由勾股定理得:故答案为:100【点睛】本题主要考查了勾股定理的应用,关键是知道方位角的含义并得出ABC是直角三角形三、解答题1、(1)见解析;(2)【分析】(1)根据平行可得DBE90°,再由HL定理证明直角三角形全等即可;(2)构造,利用矩形性质和勾股定理即可求出AE长【详解】(1)ACBE,CDBE180°DBE180°C 180°90°90°ABC和DEB都是直角三角形点D为BC的中点,ACDB ABDE,RtABCRtDEB(HL) (2)过程如下:连接AE、过A点作AHBE,C90°,DBE90°,AH=BC=4, ,在中,【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH=BC,从而利用勾股定理求AE2、(1)这个梯子的顶端距地面有高;(2)梯子的底部在水平方向滑动了【分析】(1)根据勾股定理即可求解;(2)先求出BD,再根据勾股定理即可求解【详解】解:(1)由题意可知:,;,在中,由勾股定理得:,因此,这个梯子的顶端距地面有高(2)由图可知:AD=4m,在中,由勾股定理得:,答:梯子的底部在水平方向滑动了【点睛】此题主要考查勾股定理的实际应用,解题的关键是根据题意在直角三角形中,利用勾股定理进行求解3、(1)30°;(2)y;(3)124或8【分析】(1)根据等腰三角形的性质、角平分线的定义得到ADBACBD,根据直角三角形的性质求出A;(2)作DFAB于F,根据勾股定理求出DF,再根据勾股定理列式计算求出y关于x的函数解析式;(3)分BEBD、BEDE两种情况,根据等腰三角形的性质、勾股定理计算即可【详解】解:(1)ADBD,ADBA,BD是ABC的平分线,CBDDBA,ADBACBD,C90°,A30°;(2)如图,作DFAB于F,在RtABC中,C90°,BC6,A30°,AB2BC12,DADB,DFAB,AFAB6,EF|6x|,在RtAFD中,A30°,DFAF2,在RtDEF中,即,解得:y;(3)在RtAFD中,A30°,DF2,ADBD4,当BEBD4时,AE124;当BEDE时,12x,解得:x8,即AE8,点E与A、B不重合,DBDE,综上所述:当BDE是等腰三角形时,AE的长为124或8【点睛】本题考查了角的平分线,等腰三角形的性质,勾股定理,熟练掌握勾股定理,灵活运用分类思想是解题的关键4、(1)15cm;(2)114cm2【分析】(1)连接,在中利用勾股定理求解即可;(2)先用勾股定理的逆定理证明,然后根据三角形面积公式求解即可【详解】解:(1)如图所示,连结在中,由勾股定理,得(2),四边形的面积【点睛】本题主要考查了勾股定理和勾股定理的逆定理,熟知勾股定理和勾股定理的逆定理是解题的关键5、32【分析】先利用勾股定理求得OA和OC的长,再利用三角形的面积公式求解即可【详解】解:OA=OC,OAC是等腰直角三角形,AC=8,OA2+OC2=AC2,OA=OC=4,所以S四边形OABC=SOAC+SABC=×4×4+×4×8=32【点睛】本题考查了等腰三角形的性质,勾股定理,熟记各图形的性质并准确识图是解题的关键