人教版九年级数学下册第二十八章-锐角三角函数定向测试试题(无超纲).docx
-
资源ID:32536846
资源大小:714.79KB
全文页数:35页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
人教版九年级数学下册第二十八章-锐角三角函数定向测试试题(无超纲).docx
人教版九年级数学下册第二十八章-锐角三角函数定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE2、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里3、如图,AB是的直径,点C是上半圆的中点,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为( )A B C D4、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m如果在坡度为1:2的山坡上种树,也要求株距为4m,那么相邻两树间的垂面距离为()A4mB8mC2mD1m5、cos60°的值为()ABCD16、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D57、等腰三角形的底边长,周长,则底角的正切值为( )ABCD8、如图,在ABC中,C90°,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB9、在RtABC中,C90°,BC3,AC4,那么cosB的值等于()ABCD10、如图,中,点是边上一动点,连接,以为直径的圆交于点若长为4,则线段长的最小值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等边的边长为2,点O是的中心,绕点O旋转,分别交线段于D,E两点,连接,给出下列四个结论:;四边形的面积始终等于;周长的最小值为3其中正确的结论是_(填序号)2、_3、如图,“心”形是由抛物线和它绕着原点O,顺时针旋转60°的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则_4、如图,在上述网格中,小正方形的边长均为1,点A,B,O都在格点上,则AOB的正弦值是_5、如图,已知扇形OAB的半径为6,C是弧AB上的任一点(不与A,B重合),CMOA,垂足为M,CNOB,垂足为N,连接MN,若AOB45°,则MN_三、解答题(5小题,每小题10分,共计50分)1、如图,已知抛物线(为常数,且0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)若在第一象限的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求的值;(3)在(1)的条件下,直线BD上是否存在点E,使AEC=45°?若存在,请直接写出点E的横坐标;若不存在,请说明理由2、在中,为锐角且(1)求的度数;(2)求的正切值3、如图,抛物线的图像与x轴的交分别为点A、点B,与y轴交于点C,且(1)求抛物线解析式(2)点D是对称轴左侧抛物线上一点,过点D作于点E,交AC于点P,求点D的坐标(3)在(2)的条件下,连接AD并延长交y轴于点F,点G在AC的延长线上,点C关于x轴的对称点为点H,连接AH,GF、GH,点K在AH上,过点C作,垂足为点R,延长RC交抛物线于点Q,求点Q坐标4、计算:2sin30°3tan45°sin245°+cos60°5、计算: 2sin60°+tan45°cos30°tan60°-参考答案-一、单选题1、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90°,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90°,ABCD,由折叠的性质得:FPFC,PFBBFC,FPB=C90°,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90°,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90°,CBF+BEA90°,BGE90°,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解2、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90°,CAD=45°,BAD=60°,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键3、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90°得到ACB=90°,同弧所对圆周角相等得到APC=ABC=45°,AD平分PAB得到 BAD = DAP,结合外角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,由此可知当CP为直径时,PD最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=90°CAB = CBA= 45°同弧所对圆周角相等APC=ABC=45°AD平分PAB BAD = DAPCDA= DAP+ APC = 45°+ DAPCAD= CAB+BAD = 45°+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90°,CAB = 45°, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直径所对的圆周角是90°、角平分线的性质、三角形外角的性质、三角函数的知识,做题的关键是熟练掌握相关的知识点,灵活综合的运用4、C【分析】根据坡度的概念求出AC,得到答案【详解】解:如图,AB的坡度为1:2,即,解得,AC=2,故选:C【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键5、C【分析】根据特殊角的余弦值即可得【详解】解:,故选:C【点睛】本题考查了特殊角的余弦,熟记特殊角(如)的余弦值是解题关键6、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=1×5=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形7、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键8、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90°,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键9、D【分析】根据题意画出图形,求出AB的值,进而利用锐角三角函数关系求出即可【详解】解:如图,在RtABC中,C90°,BC3,AC4,cosB故选:D【点睛】本题考查了三角函数的定义,熟知余弦函数的定义是解题关键10、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.二、填空题1、【解析】【分析】如图:连接OB、OC,利用等边三角形的性质得ABO=OBC=OCB=30°,再证明BOD=COE,可证BODCOE,即BD=CE、OD=OE,则可对进行判断;利用 SBOD=SCOE得到四边形ODBE的面积 =13SABC=33,则可对进行判断;再作OHDE,则DH=EH,计算出SDOE=34OE2,利用SDOE随OE的变化而变化和四边形ODBE的面积为定值可对进行判断;由于BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OEBC时,OE最小,BDE的周长最小,计算出此时OE的长则可对进行判断【详解】解:连接OB、OC,如图,等边ABC=ACB=60°,点O是ABC的中心,OB=OC,OB、OC分别平分ABC和ACB,ABO=OBC=OCB=30°BOC=120°,即BOE+COE=120°,而DOE=120°,即BOE+BOD=120°,BOD=COE,在BOD和COE中BOD=COEBO=COOBD=OCE BODCOE,BD=CE,OD=OE,所以正确;SBOD=SCOE四边形ODBE的面积 =SOBC=13SABC=13×34×22=33,故正确;如图:作OHDE,则DH=EH,DOE=120°,ODE=_OEH=30°, OH=12OE,HE =3OH=32OE, DE=3OE, SODE=1212OE3OE=34OE2,即SDOE随OE的变化而变化,而四边形ODBE的面积为定值, SODESBDE;所以错误;BD=CE,BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=2+DE=2+OE当OEBC时,OE最小,BDE的周长最小,此时 OE=33,BDE周长的最小值=2+1=3,所以止确故填【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质等知识点,灵活应用相关知识成为解答本题的关键2、【解析】【分析】根据特殊角的三角函数值代入计算求解即可【详解】解:原式故答案为:【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值,以及实数的混合运算法则是解题关键3、【解析】【分析】连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P根据旋转作图和“心”形的对称性得到COB=30°,BOG=60°,设OM=m,得到点B坐标为,把点B代入,求出m,即可得到点A、B坐标,根据勾股定理即可求出AB【详解】解:如图,连接OD,做BPx轴,垂足为M,作APy轴,垂足为N,AP、BP相交于点P点C绕原点O旋转60°得到点D,COD=60°,由“心”形轴对称性得AB为对称轴,OB平分COD,COB=30°,BOG=60°,设OM=m,在RtOBM中,BM=,点B坐标为,点B在抛物线上,解得,点B坐标为,点A坐标为,AP=,BP=9,在RtABP中,故答案为:【点睛】本题考查了抛物线的性质,旋转、轴对称、勾股定理、三角函数等知识,综合性较强,理解题意,表示出点B坐标是解题关键4、【解析】【分析】利用勾股定理求出AO、BO的长,再由=AB×2=AOBC,得出BC,sinAOB可得答案【详解】解:如图,过点O作OEAB于点E,过点B作BCOA于点C由勾股定理,得AO=,BO=,=AB×OE=AO×BC,BC= =,sinAOB= =故答案为:【点睛】本题主要考查三角函数的综合应用,熟练掌握正弦函数的意义、勾股定理的应用及三角形的面积求法是解题的关键5、3【解析】【分析】根据题意作辅助线,构建三角形相似,先证明DMCDNO,得DMDC=DNDO,由夹角是公共角得:DMNDCO,得MNCO=DNDO,根据AOB45°及特殊的三角函数值,代入比例式可得结论【详解】解:连接OC,延长OA、NC交于D,则OC6,CMOA,CNOB,DMCDNO90°,DD,DMCDNO,DMDN=DCDO,即DMDC=DNDO,DD,DMNDCO,MNCO=DNDO,CNOB,AOB45°,sinAOBDNOD=22,MNOC=22,OC6,MN6=22,MN.故答案为:【点睛】本题考查的是三角形相似的性质和判定,特殊的三角函数值及三角函数的定义,根据题意作出辅助线,构造出直角三角形是解答此题的关键三、解答题1、(1):y=x2-x-2;(2)a=或;(3)在直线BD上不存在点E,使AEC=45°理由见解析【解析】【分析】(1)令y=0可得A和B两点的坐标,把点B的坐标代入直线y=-x+b中可得b的值,根据点D的横坐标为-5,可得点D的坐标,将点D的坐标代入抛物线的解析式中可得答案;(2)因为点P在第一象限内的抛物线上,所以ABP为钝角因此若两个三角形相似,只可能是ABCAPB或ABCPAB如图1和图2,按照以上两种情况进行分类讨论,分别计算;(3)根据OA=OC=2,AOC=90°画圆O,半径为2,可知若优弧上存在一点E与A,C构建的AEC=45°,再证明BD与O相离,圆外角小于圆上角,可得结论【详解】解:(1)抛物线y=a(x+2)(x-4),令y=0,解得x=-2或x=4,A(-2,0),B(4,0),把B(4,0)代入直线y=x+b中,b=3,直线的解析式为y=-x+3,当x=-5时,y=-×(-5)+3=,D(-5,),点D(-5,)在抛物线y=a(x+2)(x-4)上,a(-5+2)(-5-4)=,a=,抛物线的函数表达式为:y=(x+2)(x-4)=x2-x-2;(2)由抛物线解析式,令x=0,得y=-8a,C(0,-8a),OC=8a点P在第一象限内的抛物线上,ABP为钝角若两个三角形相似,只可能是ABCAPB或ABCPAB过点P作PNx轴于点N,若ABCAPB,则有BAC=PAB,如图1所示,设P(x,y),则ON=x,PN=y,tanBAC=tanPAB,即:,y=4ax+8a,P(x,4ax+8a),代入抛物线解析式y=a(x+2)(x-4),得a(x+2)(x-4)=4ax+8a,整理得:x2-6x-16=0,解得:x=8或x=-2(与点A重合,舍去),P(8,40a),ABCAPB,即,解得:a=;若ABCPAB,则有ABC=PAB,如图2所示,与同理,可求得:y=2ax+4a,P(x,2ax+4a),代入抛物线解析式y=a(x+2)(x-4),得a(x+2)(x-4)=2ax+4a,整理得:x2-4x-12=0,解得:x=6或x=-2(与点A重合,舍去),P(6,16a),ABCPAB,即,解得:a=;综上所述,a=或;(3)在(1)的条件下,二次函数的解析式为:y=x2-x-2;当x=0时,y=-2,C(0,-2),OA=OC=2,如图3,以O为圆心2为半径画圆,在上取一点E1,过点O作OFBD于F,AOC=90°,AE1C=45°,在直线y=-x+3中,OM=3,OB=4,BM=5,SOBM=×3×4=×5OF,OF=2,直线BD与O相离,AEC45°,在直线BD上不存在点E,使AEC=45°【点睛】本题是二次函数综合题,主要考查了待定系数法,三角形的面积公式,解直角三角形,直线和圆的位置关系,圆周角的性质,坐标和图形的性质等知识,解(1)的关键是确定点D的坐标,解(2)的关键是利用分类讨论的思想;解(3)的关键是作出辅助线,是一道难度比较大的中考常考题2、(1)60°,(2)3【解析】【分析】(1)根据特殊角三角函数值直接求解即可;(2)作ADBC于D,求出AD3,CD1,由三角函数定义即可得出答案【详解】解:(1)B为锐角且,B60°;(2)作ADBC于D,如图所示:,BDAB3,AD,BC4,BD3,CDBCBD1,tanC3【点睛】本题考查了解直角三角形、特殊锐角的三角函数值、三角函数定义等知识;熟练掌握直角三角形的性质和特殊锐角的三角函数值是解题的关键3、(1);(2);(3)【解析】【分析】(1)根据求出点C的坐标,把点C的坐标代入即可求出a,即可得出抛物线解析式;(2)先求直线AC解析式,设,则可表示点P坐标,y值相减即可得出答案;(3)作的角平分线为AM,作交于点N,过点K作轴交于点T,由(2)得点D坐标,求出直线AD解析式,令,求出F点坐标,由对称得出点H坐标,求出直线AH的解析式,求出AK、AH的值,可得GF、FG,FH满足勾股定理,即,求出点G坐标,得出直线FG解析式,即可得出直线CR解析式,与抛物线解析式联立,即可求出点Q的坐标【详解】(1)由题得:,即,把代入得:,抛物线解析式为:;(2)设直线AC的解析式为,把,代入得:,解得:,直线AC的解析式为,设,则,解得:或,的对称轴为直线,点D是对称轴左侧抛物线上一点,;(3)如图,作的角平分线为AM,作交于点N,过点K作轴交于点T,由,得直线AD解析式为,H是点C的对称点,由,得直线AH解析式为,设,则,解得:,即,解得:,由题知:,即,解得:,是直角三角形,设,解得:,由,得直线FG的解析式为,直线CR解析式为,把代入得:,解得:或,【点睛】本题考查二次函数综合问题,还涉及了解直角三角形以及相似三角形的判定与性质,属于中考压轴题,掌握用待定系数法求解析式是解题的关键4、0【解析】【分析】根据特殊角三角函数值的混合计算法则求解即可【详解】解: 【点睛】本题主要考查了特殊角三角函数值的混合计算,熟知相关计算法则是解题的关键5、【解析】【分析】根据特殊角的锐角三角形函数值进行混合运算即可【详解】解:原式 【点睛】本题考查了特殊角的锐角三角形函数值的混合运算,牢记特殊角的三角函数值是解题的关键