2022年精品解析北师大版七年级数学下册第五章生活中的轴对称专题测试练习题(精选).docx
-
资源ID:32537018
资源大小:581.19KB
全文页数:23页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年精品解析北师大版七年级数学下册第五章生活中的轴对称专题测试练习题(精选).docx
七年级数学下册第五章生活中的轴对称专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A轴对称图形是由两个图形组成的B等边三角形有三条对称轴C两个等面积的图形一定轴对称D直角三角形一定是轴对称图形2、下面4个图形中,不是轴对称图形的是( )ABCD3、下列图形中不是轴对称图形的是( )ABCD4、如图,在RtABC中,=90°,沿着过点B的一条直线BE折叠ABC,使点C恰好落在AB的中点D处,则的度数为( )A30°B45°C60°D75°5、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是( )ABCD6、如图,点D是FAB内的定点且AD=2,若点C、E分别是射线AF、AB上异于点A的动点,且CDE周长的最小值是2时,FAB的度数是()A30°B45°C60°D90°7、在平面直角坐标系中,点P(2,3)关于x轴对称的点是()A(2,3)B(2,3)C(3,2)D(2,3)8、如图,在中,是上一点,将沿折叠,使点落在边上的处,则等于( )ABCD9、如图1,北京2022年冬季奥林匹克运动会会徽(冬梦)主要由会徽图形、文字标志、奥林匹克五环标志三个部分组成,图形主体形似汉字“冬”的书法形态;如图2,冬残奥会会徽(飞跃)主要由会徽图形、文字标志、国际残奥委会标志三部分组成,图形主体形似汉字“飞”的书法字体以下图案是会徽中的一部分,其中是轴对称图形的为( )ABCD10、下列消防图标中,是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,是中线,是角平分线,是高填空:(1)_;(2)_;(3)_;(4)_2、如图,把一张三角形纸片(ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DEBC,若B70°,则BDF的度数为_3、如图,长方形纸片ABCD中ADBC,ABCD,A90°,将纸片沿EF折叠,使顶点C、D分别落在点C'、D'处,C'E交AF于点G若CEF68°,则么GFD'_°4、请你发现图中的规律,在空格_上画出简易图案5、如图,将长方形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若BGE126°,则EFG的度数为 _三、解答题(5小题,每小题10分,共计50分)1、如图,已知四边形ABCD与四边形EFGH关于直线MN对称,D130°,A+B155°,AD4cm,EF5cm(1)求出AB,EH的长度以及G的度数;(2)连接AE,DH,AE与DH平行吗?为什么?2、已知,如图,等腰直角ABC中,ACB=90°,CA=CB,过点C的直线CH和AC的夹角ACH=,请按要求完成下列各题:(1)请按要求作图:作出点A关于直线CH的轴对称点D,连接AD、BD、CD,其中BD交直线CH于点E,连接AE;(2)请问ADB的大小是否会随着的改变而改变?如果改变,请用含的式子表示ADB;如果不变,请求出ADB的大小(3)请证明ACE的面积和BCE的面积满足:3、如图,格点ABC在网格中的位置如图所示(1)画出ABC关于直线MN的对称A'B'C';(2)若网格中每个小正方形的边长为1,则A'B'C'的面积为 ;(3)在直线MN上找一点P,使PA+PC最小(不写作法,保留作图痕迹)4、如图,将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处求1+2的度数5、如图,在锐角AOB的内部有一点P,试在AOB的两边上各取一点M,N,使得PMN的周长最小(保留作图痕迹)-参考答案-一、单选题1、B【分析】根据轴对称图形的定义逐一进行判定解答【详解】解:A、轴对称图形可以是1个图形,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意故选:B【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形折痕所在的这条直线叫做对称轴2、D【分析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、矩形是轴对称图形,故本选项不符合题意;B、菱形是轴对称图形,故本选项不符合题意;C、正方形是轴对称图形,故本选项不符合题意;D、平行四边形不是轴对称图形,故本选项符合题意故选:D【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、C【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握沿对称轴折叠后,两部分能够完全重合的图形是轴对称图形是解题的关键4、A【分析】根据题意可知CBE=DBE,DEAB,点D为AB的中点,EAD=DBE,根据三角形内角和定理列出算式,计算得到答案【详解】解:由题意可知CBE=DBE,DEAB,点D为AB的中点,EA=EB,EAD=DBE,CBE=DBE=EAD,CBE+DBE+EAD=90°,A=30°,故选:A【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°5、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键6、A【分析】作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,利用轴对称的性质得AG=AD=AH=2,利用两点之间线段最短判断此时CDE周长最小为DC+DE+CE=GH=2,可得AGH是等边三角形,进而可得FAB的度数【详解】解:如图,作D点分别关于AF、AB的对称点G、H,连接GH分别交AF、AB于C、E,连接DC,DE,此时CDE周长最小为DC+DE+CE=GH=2,根据轴对称的性质,得AG=AD=AH=2,DAF=GAF,DAB=HAB,AG=AH=GH=2,AGH是等边三角形,GAH=60°,FAB=GAH=30°,故选:A【点睛】本题考查了轴对称-最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题7、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论【详解】解:点P(2,3)关于x轴对称的点的坐标为(2,3)故选A【点睛】本题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解题的关键8、D【分析】先根据三角形内角和定理求出B的度数,再由图形翻折变换的性质得出CED的度数,再由三角形外角的性质即可得出结论【详解】解:在RtACB中,ACB=90°,A=25°,B=90°-25°=65°,CDE由CDB折叠而成,CED=B=65°,CED是AED的外角,ADE=CED-A=65°-25°=40°故选:D【点睛】本题考查了三角形内角和定理,翻折变换的性质,根据题意得出ADE=CED-A是解题关键9、B【分析】结合轴对称图形的概念求解即可如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称【详解】解:A不是轴对称图形,本选项不符合题意;B是轴对称图形,本选项符合题意;C不是轴对称图形,本选项不符合题意;D不是轴对称图形,本选项不符合题意故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、B【详解】解:A、不是轴对称图形,故本选项错误,不符合题意;B、是轴对称图形,故本选项正确,符合题意;C、不是轴对称图形,故本选项错误,不符合题意;D、不是轴对称图形,故本选项错误,不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键二、填空题1、#【分析】根据三角形中线的定义、角平分线的定义及三角形的高可直接求解各个小问【详解】解:(1)是中线,;故答案为,;(2)是角平分线,故答案为,;(3)是高,故答案为;(4)由题意得:;故答案为【点睛】本题主要考查三角形的中线、角平分线及高线,熟练掌握三角形的中线、角平分线及高线的定义是解题的关键2、40°【分析】利用平行线的性质求出ADE70°,再由折叠的性质推出ADEEDF70°即可解决问题【详解】解:DEBC,ADEB70°,由折叠的性质可得ADEEDF70°,BDF180°ADE-EDF40°,故答案为:40°【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键3、44【分析】根据平行线的性质和翻折不变性解答【详解】解:ADBC,DFE180°CEF180°68°112°,DFE112°,GFE180°112°68°,GFD112°68°44°故答案为:44【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形4、【分析】由图知,该图案是1,2,3,4,5的轴对称构成的图象,据此可得答案【详解】解:为1的轴对称构成的图象,为2的轴对称构成的图象,为4的轴对称构成的图象,为5的轴对称构成的图象,故横线上为3的轴对称构成的图象故答案为【点睛】本题考查了图形的变化规律解题的关键是根据题意得到图案是1,2,3,4,5的轴对称构成的图象5、63°【分析】由平行线的性质可得DEGBGE126°,再由折叠的性质可得DEF63°,再由平行线的性质可得EFGDEF63°【详解】解:四边形ABCD是矩形,ADBC,DEGBGE126°,DEFEFG,由折叠的性质可得:DEFDEG63°,EFG63°故答案为:63°【点睛】本题考查了平行线的性质以及折叠的性质,注意掌握折叠前后图形的对应关系是解此题的关键三、解答题1、(1);(2),理由见解析【分析】(1)先根据四边形的内角和为360°和已知条件求得的度数,进而根据轴对称的性质求得AB,EH的长度以及G的度数;(2)根据对称的性质可知,对称轴垂直平分对应的两点连成的线段,则,进而根据垂直于同一直线的两直线平行即可进行判断【详解】解:(1)四边形ABCD中,D130°,A+B155°,四边形ABCD与四边形EFGH关于直线MN对称,AD4cm,EF5cm,(2)连接AE,DH,则已知四边形ABCD与四边形EFGH关于直线MN对称,的对称点分别为,则【点睛】本题考查了轴对称的性质,四边形内角和,掌握轴对称的性质是解题的关键2、(1)见解析;(2)大小不变,为定值45°;(3)见解析【分析】(1)根据题意做出点A关于直线CH的轴对称点D,连接AD、BD、CD即可求解;(2)根据题意证明,然后表示出的度数,然后根据周角表示出的度数,根据表示出的度数,即可求出ADB的度数;(3)首先根据题意证明,得出,然后根据三角形面积的求法表示出即可证明【详解】解:(1)如图所示,(2)大小不变,为定值45°A关于直线CH的轴对称点D,CA=CD,ADCH,如图所示,AD与CH交于点M,在和中,又,故大小不变,为定值45°;(3)如图所示,过点B作BNCH于点N,由(2)可知,又,为等腰直角三角形,又,在和中,即,故【点睛】此题考查了全等三角形的性质和判定,三角形面积,解题的关键是根据题意表示出和的度数3、(1)见解析;(2)3.5;(3)见解析【分析】(1)依据轴对称的性质,首先确定A、B、C三点的对称点位置,再连接即可;(2)依据割补法进行计算,即可得到A'B'C'的面积;(3)依据轴对称的性质以及两点之间,线段最短,连接AC,与MN的交点位置就是点P的位置【详解】解:(1)如图所示:A'B'C'即为所求;(2)A'B'C'的面积:3×3-×1×3-×2×3-×1×2=9-1.5-3-1=3.5;故答案为:3.5;(3)如图,点P即为所求【点睛】本题主要考查了利用轴对称变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点4、180°【分析】根据翻折变换前后对应角不变,故BHOG,ADOE,CEOF,1+2+HOG+EOF+DOE360°,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,BHOG,ADOE,CEOF,1+2+HOG+EOF+DOE360°,HOG+EOF+DOEA+B+C180°,1+2360°180°180°【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOG+EOF+DOEA+B+C180°是解题关键5、见详解【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,N,PMN即为所求求作三角形【详解】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于M,交OB于N,连接PM,PN,PMN即为所求作三角形理由:由轴对称的性质得MPME,NPNF,PMN的周长PM+MN+PNEM+MN+NFEF,根据两点之间线段最短,可知此时PP1P2的周长最短【点睛】本题考查轴对称最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型