2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程同步练习练习题(无超纲).docx
-
资源ID:32537430
资源大小:388.92KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练北师大版八年级数学下册第五章分式与分式方程同步练习练习题(无超纲).docx
北师大版八年级数学下册第五章分式与分式方程同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的方程的解为整数且关于x的不等式组的解集为则满足条件的所有整数a值之和为( )A5B3C4D02、已知关于x的分式方程3的解是x3,则m的值为()A3B3C1D13、已知分式的值等于0,则x的值为( )A0B1CD1或4、若分式的值为0,则x的值是()A0B2C2或2D25、下列是最简分式的是( )ABCD6、若代数式运算结果为x,则在“”处的运算符号应该是( )A除号“÷”B除号“÷”或减号“-”C减号“-”D乘号“×”或减号“-”7、2021年9月15日消息,钟南山等团队首次精确描绘德尔塔病毒传播链,该研究揭示了德尔塔变异毒株具有潜伏期短、传播速度快、病毒载量高、核酸转阴时间长、更易发展为危重症等特点德尔塔病毒的直径约为0.00000008m,数字0.00000008用科学记数法表示为( )ABCD8、某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书若设每个A型包装箱可以装书x本,则根据题意列得方程为()ABCD9、若,则下列分式化简正确的是( )ABCD10、下列分式中最简分式是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若分式的值为0,则x的值是_2、当x_时,分式的值为03、计算:()3_;(9x2y6xy2+3xy)÷3xy_4、若分式无意义,则的值为_5、已知:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,则关于x的方程的两个解为_三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)(2)2、计算:3、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共台,设购进电冰箱台,这台家电的销售总利润元,要求购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润(3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案4、设M(1)化简代数式M;(2)请在以下四个数中:2,2,3,3,选择一个合适的数代入,求M的值5、A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等(1)A、B两种机器人每小时分别搬运多少千克化工原料?(2)某化工厂有3000kg化工原料需要搬运,A型机器人先工作若干小时,然后B型机器人加入一起搬运化工原料,所有化工原料搬运完成若A、B两种机器人合作的时间不超过10小时,则A种机器人至少先工作多少小时?-参考答案-一、单选题1、B【分析】(1)先解分式方程得,由于解是整数,故可推出的值,解不等式,由于解集为,即可确定的可能值,相加即可得出答案【详解】解分式方程得:,为整数,且,可为,-3,由得:,由得:,解集为,解得:,整数可为,故选:B【点睛】本题考查解分式方程和一元一次不等式组,掌握求解的步骤是解题的关键2、B【分析】将x3代入分式方程中进行求解即可【详解】解:把x3代入关于x的分式方程3得:,解得:m3,故选:B【点睛】本题考查分式方程的解,一般直接将解代入分式方程进行求解3、B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得【详解】解:分式的值为零,解得:x=1,故选B【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键4、B【分析】根据分式的值为0的条件,可得,且,解出即可【详解】,故选:B【点睛】本题主要考查了分式的值为0的条件,熟练掌握当分式的分子为0,分母不等于0时,分式的值为0是解题的关键5、C【详解】解:A、,不是最简分式,此项不符题意;B、,不是最简分式,此项不符题意;C、是最简分式,此项符合题意;D、,不是最简分式,此项不符题意;故选:C【点睛】本题考查了最简分式,熟记最简分式的定义(分子与分母没有公因式的分式,叫做最简分式)是解题关键6、B【分析】分别计算出+、-、×、÷时的结果,从而得出答案【详解】解:,故选B【点睛】本题主要考查分式的运算,解题的关键是熟练掌握分式的运算法则7、A【分析】根据用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,求解即可得出答案【详解】解:0.00000008=8×10-8故选:A【点睛】本题主要考查了科学记数法,熟练掌握科学记数法表示的方法进行求解是解决本题的关键8、C【分析】设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,所用A型包装箱的数量=所用B型包装箱的数量6,列分式方程即可【详解】解:设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,根据题意,得:,故选:C【点睛】本题考查了列分式方程解应用题,由实际问题抽象出分式方程的关键是分析题意找出等量关系9、C【分析】找出分子分母的公因式进行约分,化为最简形式【详解】解:A选项中,已是最简分式且不等于,所以错误,故不符合题意;B选项中,已是最简分式且不等于,所以错误,故不符合题意;C选项中,所以正确,故符合题意;D选项中,所以错误,故不符合题意;故选C【点睛】本题考查了分式的化简解题的关键是找出分式中分子、分母的公因式进行约分10、C【分析】根据最简分式的定义:在化简结果中,分子和分母已没有公因式,这样的分式称为最简分式逐项判断即得答案【详解】解:A、,不是最简分式,故本选项不符合题意;B、,不是最简分式,故本选项不符合题意;C、是最简分式,故本选项符合题意;D、,不是最简分式,故本选项不符合题意故选:C【点睛】本题考查了分式的约分和最简分式的定义,属于基本题型,熟练掌握上述知识是解题的关键二、填空题1、2【分析】根据分式值为零的条件:分子为零,分母不为零即可求解【详解】依题意可得x-2=0,x+10x=2故答案为:2【点睛】此题主要考查分式值为零的条件,解题的关键是熟知分式的值为零的条件2、4【分析】分式的值为0的条件是:(1)分子0;(2)分母0两个条件需同时具备,缺一不可据此可以解答本题【详解】解:分式的值为0,且,解得:x4时,分式的值为0,故答案为:4【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可3、-27x38y6 3x2y+1 【分析】根据分式的乘方法则和分式的约分方法计算即可【详解】解:()3;(9x2y6xy2+3xy)÷3xy=3x2y+1;故答案为:;3x2y+1【点睛】本题考查了分式的乘方和分式的约分,分式的乘方是把分子、分母分别乘方,分式的约分是把分式分子、分母中除1以外的公因式约去4、-1【分析】根据使分式无意义的条件“分母为0”,计算即可【详解】根据题意有,解得:故答案为:-1【点睛】本题考查使分式无意义的条件掌握使分式无意义的条件是分母为0是解答本题的关键5、x1a,x2【分析】根据关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,得到规律求解即可【详解】解:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,依规律,得x1a1或x1,解得:x1a,x2故答案为:x1a,x2【点睛】本题主要考查了与分式有关的规律型问题,解题的关键在于根据题意找到规律并且构造三、解答题1、(1);(2)无解【分析】(1)分式方程两边乘以,去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解(2)分式方程两边乘以去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解【详解】(1),解:,检验:当时,所以,原方程的解是,(2),解:,检验:当时,所以,不是原方程的解【点睛】本题考查了解分式方程,解题的关键是利用“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根2、【分析】先把除化乘,再因式分解同时约分,通分合并化简为最简分式即可【详解】解:,=,=,=,=,=【点睛】本题考查分数加减乘除混合运算,掌握分式混合运算法则是解题关键3、(1)每台空调的进价为元,则每台电冰箱的进价为元;(2)当购进电冰箱台,空调台获利最大,最大利润为元;(3)当时,购进电冰箱台,空调台销售总利润最大;当时,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大【分析】设每台空调的进价为元,则每台电冰箱的进价为元,根据商城用“80000元购进电冰箱的数量与用元购进空调的数量相等”,列出方程,即可解答;设购进电冰箱台,这台家电的销售总利润为元,则y=(2100-2000)x+(1750-1600)(100-x)=-50x+15000,由题意:购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,列出不等式组,解得3313x40,再由为正整数,的,即合理的方案共有种,然后由一次函数的性质,确定获利最大的方案以及最大利润;当电冰箱出厂价下调k(0<k<100)元时,则利润y=(k-50)x+15000,分三种情况讨论:当k-50>0;当时;当k-50<0;利用一次函数的性质,即可解答【详解】解:设每台空调的进价为元,则每台电冰箱的进价为元,根据题意得:,解得:,经检验,是原方程的解,且符合题意,x+400=1600+400=2000,答:每台空调的进价为元,则每台电冰箱的进价为元设购进电冰箱台,这台家电的销售总利润为元,则y=(2100-2000)x+(1750-1600)(100-x)=-50x+15000,根据题意得:100-x2xx40,解得:3313x40,为正整数,x=34,合理的方案共有种,即电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;,随的增大而减小,当时,有最大值,最大值为:-50×34+15000=13300(元,答:当购进电冰箱台,空调台获利最大,最大利润为13300元当厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,则利润y=(2100-2000+k)x+(1750-1600)(100-x)=(k-50)x+15000,当k-50>0,即50<k<100时,随的增大而增大,3313x40,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;当时,各种方案利润相同;当k-50<0,即0<k<50时,随的增大而减小,3313x40,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;答:当50<k<100时,购进电冰箱台,空调台销售总利润最大;当时,各种方案利润相同;当0<k<50时,购进电冰箱台,空调台销售总利润最大【点睛】本题考查了列分式方程的应用、一元一次不等式组的应用以及一次函数的应用,找准数量关系,正确列出分式方程和一元一次不等式组是解题的关键4、(1)a25a+6(2)30【分析】(1)根据分式的除法法则计算即可;(2)根据分式有意义的条件确定a的值,代入计算即可(1)解: M×(a3)(a2)a25a+6;(2)解:由题意得,a±2,a±3,当a3时,M(3)25×(3)+630【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则、分式有意义的条件是解题的关键5、(1)B型号机器人每小时搬运60千克,A型号机器人每小时搬运90千克;(2)A种机器人至少先工作小时【分析】(1)设B型号机器人每小时搬运x千克,A型号机器人每小时搬运千克,列出分式方程计算即可;(2)设A种机器人至少先工作t小时,列出方程计算即可;【详解】(1)设B型号机器人每小时搬运x千克,A型号机器人每小时搬运千克,则,解得:,经检验,是分式方程的解,B型号机器人每小时搬运60千克,A型号机器人每小时搬运90千克;(2)A、B两种机器人合作的时间不超过10小时,设A种机器人至少先工作t小时,则,解得:,A种机器人至少先工作小时【点睛】本题主要考查了分式方程的应用,一元一次方程的应用,正确列出方程准确计算是解题的关键