2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专题训练试卷(精选含详解).docx
-
资源ID:32537686
资源大小:863.30KB
全文页数:31页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练沪教版七年级数学第二学期第十四章三角形专题训练试卷(精选含详解).docx
沪教版七年级数学第二学期第十四章三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ACB90°,BAC40°,直线ab,若BC在直线b上,则1的度数为()A40°B45°C50°D60°2、以下长度的三条线段,能组成三角形的是( )A2,3,5B4,4,8C3,4.8,7D3,5,93、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形4、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,添加下列条件不能判定的是( )ABCD5、下列命题是真命题的是( )A等腰三角形的角平分线、中线、高线互相重合B一个三角形被截成两个三角形,每个三角形的内角和是90度C有两个角是60°的三角形是等边三角形D在ABC中,则ABC为直角三角形6、如图,点D、E分别在ABC的边BA、BC上,DEAB,过BA上的点F(位于点D上方)作FGBC,若AFG=42°,则DEB的度数为( )A42°B48°C52°D58°7、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A10B15C17D198、若一个三角形的三个外角之比为3:4:5,则该三角形为()A直角三角形B等腰三角形C等边三角形D等腰直角三角形9、等腰三角形的一个顶角是80°,则它的底角是( )A40°B50°C60°D70°10、下列长度的三条线段能组成三角形的是( )A2,3,6B2,4,7C3,3,5D3,3,7第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点若AD=6,则EP+CP的最小值为_2、如图,已知ABC是等边三角形,边长为3,G是三角形的重心,那么GA =_3、如图,ACB90°,ACBC,ADCD于点D,BECD于点E,有下面四个结论: CADBCE; ABEBAD; ABCD; CDADDE其中所有正确结论的序号是_4、如图,中,点在边上,若,则的度数为_5、如图,PAPB,请你添加一个适当的条件:_,使得PADPBC三、解答题(10小题,每小题5分,共计50分)1、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DEAB,交AC于点E求证:AED是等腰三角形2、ABC中,ABAC,BD平分ABC交AC于点D,从点A作AEBC交BD的延长线于点E(1)若BAC40°,求E的度数;(2)点F是BE上一点,且FEBD取DF的中点H,请问AHBE吗?试说明理由3、如图,为等边三角形,D是BC中点,CE是的外角的平分线求证:4、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,求和的度数5、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上要求以为边画一个等腰,且使得点为格点请在下面的网格图中画出3种不同的等腰6、已知POQ=120°,点A,B分别在OP,OQ上,OAOB,连接AB,在AB上方作等边ABC,点D是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)连接OC,求证:COP=COQ;(3)连接CD,CD交OP于点F,请你写出一个DAB的值,使CD=OB+OC一定成立,并证明7、如图,点在上,点在上,=求证:8、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,ABU+CDV180°(1)如图1,求证:ABCD;(2)如图2,BEDF,MEBABE+5°,FDR35°,求MEB的度数;(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MGEN,连接ME,GMEGEM,EBD2NEG,EB平分DEN,MHUV于点H,若EDCCDB,求GMH的度数9、如图,已知点E、C在线段BF上,求证:ABCDEF10、如图,在ABC中,BAC90°,ABAC,射线AE交BC于点P,BAE15°;过点C作CDAE于点D,连接BE,过点E作EFBC交DC的延长线于点F(1)求F的度数;(2)若ABE75°,求证:BECF-参考答案-一、单选题1、C【分析】根据三角形内角和定理确定,然后利用平行线的性质求解即可【详解】解:,故选:C【点睛】题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键2、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.87,能组成三角形,符合题意;D、3+59,不能组成三角形,不符合题意故选:C【点睛】本题主要考查对三角形三边关系的理解应用注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可3、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线AD=CD=BDA=DCA,B=DCBA+ACB+B=180° A+DCA+DCB+B=180即2A+2B=180°A+B=90°ACB=90°ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键4、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可【详解】解:A. ,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,故能判定,不符合题意;D.,故能判定,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键5、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误故选:C【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键6、B【分析】根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得【详解】解:,故选:B【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键7、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论【详解】解:当腰是3,底边是7时,3+37,不满足三角形的三边关系,因此舍去当底边是3,腰长是7时,3+77,能构成三角形,则其周长3+7+717故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键8、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x360°,解得,x30°,三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,此三角形为直角三角形,故选:A【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键9、B【分析】依据三角形的内角和是180°以及等腰三角形的性质即可解答【详解】解:(180°-80°)÷2=100°÷2=50°;答:底角为50°故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点10、C【分析】根据三角形的三边关系,逐项判断即可求解【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键二、填空题1、6【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】解:作点E关于AD的对称点F,连接CF,ABC是等边三角形,AD是BC边上的中垂线,点E关于AD的对应点为点F,CF就是EP+CP的最小值ABC是等边三角形,E是AC边的中点,F是AB的中点,CF=AD=6,即EP+CP的最小值为6,故答案为6【点睛】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键2、【分析】延长AG交BC于D,根据重心的概念得到ADBC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可【详解】解:延长AG交BC于D,G是三角形的重心,ADBC,BD=DC=BC=,由勾股定理得,AD=,GA=AD=,故答案为:【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍3、【分析】由ACB=90°,BECD,ADCD,得到ACD+BCE=90°,ADC=CEB=90°,则ACD+CAD=90°,ADBE,即可判断,即可利用AAS证明CADBCE,即可判断;则AD=CE,得到CD=CE+DE=AD+DE,即可判定;由AB>AC>CD,得到ABCD,即可判断【详解】解:ACB=90°,BECD,ADCD,ACD+BCE=90°,ADC=CEB=90°,ACD+CAD=90°,ADBE,CAD=BCE,ABE=BAD,故正确;又AC=CB,CADBCE(AAS),故正确;AD=CE,CD=CE+DE=AD+DE,故正确,AB>AC>CD,ABCD,故错误;故答案为:【点睛】本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知相关知识是解题的关键4、【分析】先求出EDC=35°,然后根据平行线的性质得到C=EDC=35°,再由直角三角形两锐角互余即可求解【详解】解:1=145°,EDC=35°,DEBC,C=EDC=35°,又A=90°,B=90°-C=55°,故答案为:55°【点睛】本题主要考查了平行线的性质,直角三角形两锐角互余,求出C的度数是解题的关键5、D=C或PAD=PBC或DBC=CAD或PD=PC 或AC=BD【分析】已有P是公共角和边PA=PB,根据全等三角全等的条件,利用AAS需要添加D=C,根据ASA需要添加PAD=PBC或DBC=CAD,根据边角边需要添加 PD=PC 或PC=PD填入一个即可【详解】解:PA=PB,P是公共角,根据AAS可以添加D=C,在PAD和PBC中,PA=PB,P是公共角,D=C,PADPBC(AAS)根据ASA可以添加PAD=PBC,在PAD和PBC中,PA=PB,P是公共角,PAD=PBC,PADPBC(ASA)根据ASA可以添加DBC=CAD,180°-DBC=180°-CAD,即PAD=PBC,在PAD和PBC中,PA=PB,P是公共角,PAD=PBC,PADPBC(ASA)根据SAS可添加PD=PC在PAD和PBC中,PA=PB,P是公共角,PD=PC,PADPBC(SAS)根据SAS可添加BD=AC,PA=PB,BD=AC,PA+AC=PB+BD即PC=PD,在PAD和PBC中,PA=PB,P是公共角,PD=PC,PADPBC(SAS)故答案为:D=C或PAD=PBC或DBC=CAD或PD=PC 或AC=BD【点睛】本题考查三角形全等添加条件,掌握三角形全等判定方法与定理是解题关键三、解答题1、见解析【分析】根据等腰三角形的性质得到BAD=CAD,根据平行线的性质得到ADE=BAD,等量代换得到ADE=CAD于是得到结论【详解】解:ABC是等腰三角形,AB=AC,AD是底边BC上的中线,BAD=CAD,DEAB,ADE=BAD,ADE=CAD,AE=ED,AED是等腰三角形【点睛】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键2、(1)E35°;(2)AHBE理由见解析【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出CBD的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS”可证ABDAEF,可得AD=AF,由等腰三角形的性质可求解【详解】解:(1)AB=AC,ABC=ACB,BAC=40°,ABC=(180°-BAC)=70°,BD平分ABC,CBD=ABC=35°,AEBC,E=CBD=35°;(2)BD平分ABC,E=CBD,CBD=ABD=E,AB=AE,在ABD和AEF中,ABDAEF(SAS),AD=AF,点H是DF的中点,AHBE【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键3、证明见解析.【分析】过D作DGAC交AB于G,由等边三角形的性质和平行线的性质得到BDGBGD60°,于是得到BDG是等边三角形,再证明AGDDCE即可得到结论.【详解】证明:过D作DGAC交AB于G,ABC是等边三角形,ABAC,BACBBAC60°,又DGAC,BDGBGD60°,BDG是等边三角形,AGD180°BGD120°,DGBD,点D为BC的中点,BDCD,DGCD,EC是ABC外角的平分线,ACE(180°ACB)60°,BCEACBACE120°AGD,ABAC,点D为BC的中点,ADBADC90°,又BDG60°,ADE60°,ADGEDC30°,在AGD和ECD中,AGDECD(ASA)ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键4、87°,40°【分析】根据三角形外角的性质可得,代入计算即可求出,再根据三角形内角和定理求解即可【详解】解:,【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算5、答案见解析【分析】AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可【详解】解:如图,答案不唯一【点睛】本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可6、(1)见解析;(2)见解析;(3)DAB=150°,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,ACB=60°由同角的补角相等得CAO=CBE,由SAS证得CAO和CBE全等,即可得证;(3)由DAB=150°, DA=AB,得ADB=ABD=15°,由等边三角形性质,可得CAB=CBA=ACB =60°,故CAD=150°,由等边对等角得ADC=ACD=15°,由此DBC=DCB=75°,由等角对等边得DB=DC 再由POQ=120°,BDC=30°,得DFO=90°,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ上截取BE=AO,连接CE,ABC为等边三角形,CA=CB,ACB=60°POQ=120°,CAO+CBO=180°CBO+CBE=180°,CAO=CBE,在CAO和CBE中,CAOCBE(SAS),CO=CE,COA=CEB,COE=CEB,COP=COQ; (3)DAB=150°,如图:DAB=150°, DA=AB,ADB=ABD=15°ABC为等边三角形,CAB=CBA=ACB =60°,CAD=150°,AD=AC,ADC=ACD=15°,DBC=DCB=75°,DB=DC,POQ=120°,BDC=30°,DFO=90°AD=AC,DF=FCDO=OC DB=DO+OB,DB=CO+OB,CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.7、见解析【分析】根据已知条件和公共角,直接根据角边角证明,进而即可证明【详解】在与中, 【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键8、(1)见详解;(2)MEB40°,(3)GMH=80°【分析】(1)根据等角的补角性质得出ABD=CDV,根据同位角相等两直线平行可得ABCD;(2)根据ABCD;利用内错角相等得出ABD=RDB,根据BEDF,得出EBD=FDB,利用等量减等量差相等得出ABE=FDR,根据FDR35°,可得ABE=FDR=35°即可;(3)设ME交AB于S,根据MGEN,得出NES=GMS=GES,设NES=y°,可得NEG=NES+GES=2NES=2y°,根据EBD2NEG,得出EBD =4NES=4y°,根据EDCCDB,设EDC=x°,得出CDB=7x°,根据ABCD,得出GBE+EBD+CDB=180°,可得35+4y+7x=180根据三角形内角和BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,利用EB平分DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证MEUV,根据MHUV,可求SMH=90°,SMG=NES=10°即可【详解】(1)证明:ABU+ABD=180°,ABU+CDV180°ABU=180°-ABD,CDV180°-ABU,ABD=CDV,ABCD;(2)解:ABCD;ABD=RDB,ABE+EBD=FDB+FDR,BEDF,EBD=FDB,ABE=FDR,FDR35°,ABE=FDR=35°,MEBABE+5°=35°+5°=40°,(3)解:设ME交AB于S,MGEN,NES=GMS=GES,设NES=y°,EBD2NEGNEG=NES+GES=2NES=2y°,EBD =4NES=4y°,EDCCDB,设EDC=x°CDB=7x°,ABCD,ABD+CDB=180°,即GBE+EBD+CDB=180°,35+4y+7x=180,BDE=BDC-EDC=7x-x=6x,BED=180°-EBD-EDB=180°-4y°-6x°,EB平分DEN,NEB=BED,NEB=NES+SEB=y°+40°,y°+40°=180°-4y°-6x°,解得,EBD=4y°=40°=MEB,MEUV,MHUV,MHME,SMH=90°,SMG=NES=10°,GMH=90°-SMG=90°-10°=80°【点睛】本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键9、见解析【分析】由平行线的性质可证明再由,可推出最后即可利用“ASA”直接证明【详解】证明:,即在和中,【点睛】本题考查三角形全等的判定,平行线的性质,线段的和与差掌握三角形全等的判定条件是解答本题的关键10、(1);(2)证明见详解【分析】(1)根据三角形内角和及等腰三角形的性质可得,由各角之间的关系及三角形内角和定理可得,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明【详解】解:(1),;(2),由(1)可得,(内错角相等,两直线平行)【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键