强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组定向攻克试题(名师精选).docx
-
资源ID:32537712
资源大小:383.51KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组定向攻克试题(名师精选).docx
第二章一元一次不等式和一元一次不等式组定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列语句中,是命题的是()若160°,260°,则12;同位角相等吗?画线段ABCD;如果ab,bc,那么ac;直角都相等ABCD2、下列各式:1x:4x+5>0;x<3;x2+x10,不等式有()个A1B2C3D43、若不等式组解集是,则( )ABCD4、下列说法中,正确的是( )Ax3是不等式2x1的解Bx3是不等式2x1的唯一解Cx3不是不等式2x1的解Dx3是不等式2x1的解集5、关于x的方程32x3(k2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A5B4C3D26、如图,直线与分别交轴于点,则不等式的解集为( )ABCD或7、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A24人B23人C22人D不能确定8、已知a>b,下列变形一定正确的是()A3a<3bB4+a>4bCac2>bc2D3+2a>3+2b9、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A小于12件B等于12件C大于12件D不低于12件10、若一次函数ykx+b(k,b为常数,且k0)的图象经过A(0,1),B(1,1),则不等式kx+b10的解集为()Ax0Bx0Cx1Dx1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于的不等式的解集是,则关于的不等式的解集是_ 2、全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题答对一题记4分,答错(或不答)一题记2分小明参加本次竞赛得分要超过60分,他至少要答对 _道题3、已知关于x的一元一次不等式的解集为,那么关于y的一元一次不等式的解集为_4、某自动贩卖机售卖A、B两种盲盒,B种盲盒的价格比A种盲盒价格的6倍少60元,该贩卖机存储的A种盲盒不低于22个,B种盲盒的数量不少于A种的2倍,且最多可存储两种盲盒100个,某天上午售卖后,工作人员及时补货,将售卖机装满,该天下午,由于系统bug,B种盲盒的价格变为原来A种的价格,而A种的价格变为原来价格的5倍少50元后再打了个六折,下午A种盲盒的销量变为上午的2倍,而B种盲盒的销量不变,结果上午的销售额比下午多390元,其中两种盲盒的价格均为整数,则下午贩卖的盲盒的销售额最多可为_元5、按下面的程序计算,若开始输入的值为正整数,规定:程序运行到“判断结果是否大于10”为一次运算,当时,输出结果_若经过2次运算就停止,则可以取的所有值是_三、解答题(5小题,每小题10分,共计50分)1、求下列不等式组的整数解2、2021年11月,我市政府紧急组织一批物资送往新冠疫情高风险地区,现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱(1)求食品和矿泉水各有多少箱;(2)现计划租用,两种货车共10辆,一次性将所有物资送到群众手中,已知种货车最多可装食品40箱和矿泉水10箱,种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案;(3)在(2)的条件下,种货车每辆需付运费600元,种货车每辆需付运费450元,政府应该选哪种方案,才能使运费最少?最少运费是多少?3、根据不等式的性质,解下列不等式,并在数轴上表示解集:(1)2x+55x-4(2)4-3x4x-34、解不等式组,并把解集表示在数轴上5、为了抗击新冠疫情,全国人民众志成城,守望相助某地一水果购销商安排15辆汽车装运,这3种水果共120吨进行销售,所得利润全部捐给国家抗疫已知15辆汽车都要装满,且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆汽车对不同水果的运载量和销售每吨水果获利情况如下表所示:水果品种汽车运载量(吨/辆)1086水果获利(元/吨)80012001000(1)设装运种水果的车辆数为辆,装运种水果的车辆数为辆求与之间的函数关系式;设计车辆的安排方案,并写出每种安排方案(2)若原有获利不变的情况下,当地政府按每吨60元的标准实行运费补贴该经销商打算将获利连同补贴全部捐出问:哪种车辆安排方案可以使这次捐款数(元)最多?捐款数最多是多少?-参考答案-一、单选题1、A【分析】根据命题的定义分别进行判断即可【详解】解:若160°,260°,则12,是命题,符合题意;同位角相等吗?是疑问句,不是命题,不符合题意;画线段ABCD,没有对事情作出判断,不是命题,不符合题意;如果ab,bc,那么ac,是命题,符合题意;直角都相等,是命题,符合题意,命题有故选:A【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理2、B【分析】主要依据不等式的定义:用“>”、“”、“<”、“”、“”等不等号表示不相等关系的式子是不等式来判断【详解】解:根据不等式的定义可知,所有式子中是不等式的是4x+5>0; x<3,有2个故选:B【点睛】本题主要考查了不等式的定义,用“>”、“”、“<”、“”、“”等不等号表示不相等关系的式子叫作不等式3、C【分析】首先解出不等式组的解集,然后与x4比较,即可求出实数m的取值范围【详解】解:由得2x4m-10,即x2m-5;由得xm-1;不等式组的解集是x4,若2m-5=4,则m,此时,两个不等式解集为x4,x,不等式组解集为x4,符合题意;若m-1=4,则m=5,此时,两个不等式解集为x5,x4,不等式组解集为x5,不符合题意,舍去;故选:C【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知数处理,将求出的解集与已知解集比较,进而求得另一个未知数求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了4、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立【详解】解:A、当x3时,2×31,成立,故A符合题意;B、当x3时,2×31成立,但不是唯一解,例如x4也是不等式的解,故B不符合题意;C、当x3时,2×31成立,是不等式的解,故C不符合题意;D、当x3时,2×31成立,是不等式的解,但不是不等式的解集,其解集为:x,故D不符合题意;故选:A【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题5、A【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可【详解】解:解方程32x3(k2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,则,符合条件的整数的值的和为,故选A【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键6、C【分析】观察图象,可知当x0.5时,y=kx+b0,y=mx+n0;当0.5x2时,y=kx+b0,y=mx+n0;当x2时,y=kx+b0,y=mx+n0,二者相乘为正的范围是本题的解集【详解】解:由图象可得,当x2时,(kx+b)0,(mx+n)0,则(kx+b)(mx+n)0,故A错误;当0x2时,kx+b0,mx+n0,(kx+b)(mx+n)0,但是没有包含所有使得(kx+b)(mx+n)0的解集,故B错误;当时,kx+b0,mx+n0,故(kx+b)(mx+n)0,且除此范围之外都不能使得(kx+b)(mx+n)0,故C正确;当x0.5时,y=kx+b0,y=mx+n0;当x2时,y=kx+b0,y=mx+n0,则(kx+b)(mx+n)0,故D错误;故选:C【点睛】本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键7、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数【详解】解:设每组预定的学生数为x人,由题意得,解得是正整数故选:C【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键8、D【分析】根据不等式的基本性质逐项排查即可【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C当c0时,不等式不成立,故C选项不正确,不符合题意;D不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D选项正确,符合题意故选:D【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变9、C【分析】根据图象找出在的上方即收入大于成本时,x的取值范围即可【详解】解:根据函数图象可知,当时,即产品的销售收入大于销售成本,该公司盈利故选:C【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x的取值范围是本题的关键10、D【分析】利用函数的增减性和x=1时的函数图像上点的位置来判断即可【详解】解:如图所示:k0,函数y= kx+b随x的增大而增大,直线过点B(1,1),当x=1时,kx+b=1,即kx+b-1=0,不等式kx+b10的解集为:x1故选择:D【点睛】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键二、填空题1、x【分析】根据不等(2ab)xa5b0的解集是x1,可得a与b的关系,根据解不等式的步骤,可得答案【详解】解;不等式(2ab)xa5b0的解集是x1,2ab0,2ab5ba,a2b,b0,2axb04bxb04bxbx<,故答案为:x<【点睛】本题考查了不等式的解集,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变2、19【分析】设小明答对x道题,则答错(或不答)(25-x)道题,利用总得分=4×答对题目数-2×答错(或不答)题目数,结合小明参加本次竞赛得分要超过60分,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论【详解】解:设小明答对x道题,则答错(或不答)(25-x)道题,依题意得:4x-2(25-x)60,解得:x又x为正整数,x可以取的最小值为19故答案为:19【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键3、【分析】设则化为:整理可得:,从而可得的解集是不等式的解集,从而可得答案.【详解】解: 关于x的一元一次不等式的解集为,设 则化为: 两边都乘以得: 即 的解集为:的解集, 故答案为:【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.4、8080【分析】设A种盲盒的价格为元,则B种盲盒的价格为元,A种盲盒的数量为个,则,B种盲盒的数量为,设上午种盲盒售出个,B种盲盒售出个,则上午的销售额为该天下午, A种盲盒的价格为即元,B种盲盒的价格为元,种盲盒售出个,B种盲盒售出个,种盲盒售出个,B种盲盒售出个,进而求得下午的销售额,根据题意列出关系式,根据不等式确定的范围,进而根据一次函数的性质,确定的值,根据78的因数为2,3,13,进而求得的值,根据一次函数的性质确定取最大值时,下午的销售额取得最大值即可求解【详解】解:设A种盲盒的价格为元,则B种盲盒的价格为元,A种盲盒的数量为个,则,B种盲盒的数量为,根据题意可得,则设上午种盲盒售出个,B种盲盒售出个,则上午的销售额为该天下午, A种盲盒的价格为即元,B种盲盒的价格为元,种盲盒售出个,B种盲盒售出个,则下午的销售额为由上午的销售额比下午多390元,可得且,为整数,即且且由于下午的销售额为:设,则当取最大值时候,销售额取得最大值,设,则当取得最大值,取得最大值,或或或, 或,或或,或解得或,或,或,或(舍去),当时,故答案为:【点睛】本题考查了一次函数的性质,不等式组的应用,掌握一次函数的性质是解题的关键5、11, 2或3或4 【分析】根据题意将代入求解即可;根据题意列出一元一次不等式组即可求解【详解】解:当时,第1次运算结果为,第2次运算结果为,当时,输出结果,若运算进行了2次才停止,则有,解得:可以取的所有值是2或3或4,故答案为:11,2或3或4【点睛】此题考查了程序框图计算,代数式求值以及解一元一次不等式组,解题的关键是根据题意列出一元一次不等式组三、解答题1、2,3,4【分析】首先解不等式组,然后确定不等式组的解集中的整数解即可【详解】解:,解不等式得:,解不等式得:,所以不等式组的解集为,所以不等式组的整数解为2,3,4【点睛】本题考查了求一元一次不等式组的整数解,熟练掌握不等式组的解法是解题关键2、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费×租车辆数,可分别求出三个运输方案所需总运费,比较后即可得出结论【详解】解:(1)设食品有箱,矿泉水有箱,依题意,得,解得,答:食品有260箱,矿泉水有150箱;(2)设租用种货车辆,则租用种货车辆,依题意,得解得:3m5,又m为正整数,m可以为3,4,5,共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B种货车6辆;方案3:租用A种货车5辆,B种货车5辆(3)选择方案1所需运费为600×3+450×7=4950(元),选择方案2所需运费为600×4+450×6=5100(元),选择方案3所需运费为600×5+450×5=5250元)495051005250,政府应该选择方案1,才能使运费最少,最少运费是4950元【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)利用总运费=每辆车的运费×租车辆数,分别求出三个运输方案所需总运费3、(1)x3,数轴表示见解析(2)x1,数轴表示见解析【分析】(1)根据不等式的性质,先求出不等式的解集,然后在数轴上表示出不等式的解集即可;(2)根据不等式的性质,先求出不等式的解集,然后在数轴上表示出不等式的解集即可(1)解:不等式两边同时减5x,得-3x+5-4不等式两边同时减5,得-3x-9不等式两边同时除以-3,得x3在数轴上表示x的取值范围如图所示(2)解:不等式两边同时加-4x-4,得-7x-7不等式两边同时除以-7,得x1在数轴上表示x的取值范围如图所示【点睛】本题主要考查了求一元一次不等式的解集,数轴上表示不等式的解集,解题的关键在于能够熟知解一元一次不等式的方法4、,图见解析【分析】分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题【详解】解:由得 由得 把不等式组的解集表示在数轴上,如图,原不等式组的解为【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键5、(1)y=152x;有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)采用A、B、C三种的车辆数分别是:3辆、9辆、3辆;捐款数最多是134400元【分析】(1)等量关系为:车辆数之和=15,由此可得出x与y的关系式;由题意,列出不等式组,求出x的取值范围,即可得到答案;(2)总利润为:装运A种水果的车辆数×10×800+装运B种水果的车辆数×8×1200+装运C种水果的车辆数×6×1000+运费补贴,然后按x的取值来判定【详解】解:(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,则装C种水果的车辆是(15-x-y)辆则10x+8y+6(15-x-y)=120,即10x+8y+90-6x-6y=120,则y=15-2x;根据题意得:,解得:3x6则有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)w=10×800x+8×1200(15-2x)+6×100015-x-(15-2x)+120×50=5200x+150000,根据一次函数的性质,当x=3时,w有最大值,是5200×3+150000=134400(元)应采用A、B、C三种的车辆数分别是:3辆、9辆、3辆【点睛】本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键