2022年最新强化训练沪科版九年级数学下册第24章圆综合练习试题(无超纲).docx
-
资源ID:32538358
资源大小:1.03MB
全文页数:36页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新强化训练沪科版九年级数学下册第24章圆综合练习试题(无超纲).docx
沪科版九年级数学下册第24章圆综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦2、下列图形中,是中心对称图形的是( )ABCD3、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D4、如图,在RtABC中,点D、E分别是AB、AC的中点将ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:AECADB;CP存在最大值为;BP存在最小值为;点P运动的路径长为其中,正确的( )ABCD5、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )A36 cmB27 cmC24 cmD15 cm6、如图,在中,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )ABCD7、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D188、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形9、下列图形中,是中心对称图形,但不是轴对称图形的是( )ABCD10、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为_cm2、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为若,则的大小为_(度)3、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,点P在BC边所在的直线l上移动,小方发现AP的最小值是_;(2)如图(2)在直角中,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是_4、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_5、如图,在平面直角坐标系内,OA0A190°,A1OA060°,以OA1为直角边向外作RtOA1A2,使A2A1O90°,A2OA160°,按此方法进行下去,得到 RtOA2A3,RtOA3A4,若点A0的坐标是(1,0),则点A2021的横坐标是_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N),特别地,若图形M,N有公共点,规定d(M,N)0已知:如图,点A(,0),B(0,)(1)如果O的半径为2,那么d(A,O) ,d(B,O) (2)如果O的半径为r,且d(O,线段AB)=0,求r的取值范围;(3)如果C(m,0)是x轴上的动点,C的半径为1,使d(C,线段AB)<1,直接写出m的取值范围2、如图,在中,O为AC上一点,以点O为圆心,OC为半径的圆恰好与AB相切,切点为D,与AC的另一个交点为E(1)求证:BO平分;(2)若,求BO的长3、如图AB是O的直径,弦CDAB于点E,作FAC=BAC,过点C作CFAF于点F(1)求证:CF是O的切线;(2)若sinCAB=,求=_(直接写出答案)4、如图,在ABC中,C90°,点O为边BC上一点以O为圆心,OC为半径的O与边AB相切于点D(1)尺规作图:画出O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC6求劣弧的长5、如图,在RtABC中,B90°,BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的O经过点D(1)求证:BC是O的切线;(2)若点F是劣弧AD的中点,且CE3,试求阴影部分的面积-参考答案-一、单选题1、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.2、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意故选:C【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合3、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出4、B【分析】根据,点D、E分别是AB、AC的中点得出DAE=90°,AD=AE=,可证DAB=EAC,再证DABEAC(SAS),可判断AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,根据AECADB,得出DBA=ECA,可证P=BAC=90°,CP为A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在RtAEC中,CE=,可判断CP存在最大值为正确;AECADB,得出BD=CE=,在RtBPC中,BP最小=可判断BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,可求ACE=30°,根据圆周角定理得出AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,可得ABD=30°根据圆周角定理得出AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断点P运动的路径长为正确即可【详解】解:,点D、E分别是AB、AC的中点DAE=90°,AD=AE=,DAB+BAE=90°,BAE+EAC=90°,DAB=EAC,在DAB和EAC中,DABEAC(SAS),故AECADB正确;作以点A为圆心,AE为半径的圆,当CP为A的切线时,CP最大,AECADB,DBA=ECA,PBA+P=ECP+BAC,P=BAC=90°,CP为A的切线,AECP,DPE=PEA=DAE=90°,四边形DAEP为矩形,AD=AE,四边形DAEP为正方形,PE=AE=3,在RtAEC中,CE=,CP最大=PE+EC=3+,故CP存在最大值为正确;AECADB,BD=CE=,在RtBPC中,BP最小=,BP最短=BD-PD=-3,故BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,BAC=90°,BP=CO=AO=,当AECP时,CP与以点A为圆心,AE为半径的圆相切,此时sinACE=,ACE=30°,AOP=2ACE=60°,当ADBP时,BP与以点A为圆心,AE为半径的圆相切,此时sinABD=,ABD=30°,AOP=2ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,POP=POA+AOP=60°+60°=120°,L故点P运动的路径长为正确;正确的是故选B【点睛】本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键5、C【分析】连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可【详解】解:连接,过点作于点,交于点,如图所示:则,的直径为,在中,即水的最大深度为,故选:C【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键6、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点A作ACx轴于点C, 设 ,则 , , , ,解得: , , ,点 ,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型7、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积×2×2×36(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8、A【分析】根据等边三角形的对称性判断即可【详解】等边三角形是轴对称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键9、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键10、D【分析】由平角的性质得出BCD=116°,再由内接四边形对角互补得出A=64°,再由圆周角定理即可求得BOD=2A=128°【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半二、填空题1、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则ODMN,MD=DN,在RtODM中,OM=180cm,OD=60cm,cm,cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键2、20【分析】先利用旋转的性质得到ADC=D=90°,DAD=,再利用四边形内角和计算出BAD=70°,然后利用互余计算出DAD,从而得到的值【详解】矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,ADC=D=90°,DAD=,ABC=90°,BAD=180°-1=180°-110°=70°,DAD=90°-70°=20°,即=20°故答案为20【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等3、10 5 【分析】(1)如图,作AHBC于H根据垂线段最短,求出AH即可解决问题(2)如图,在AB上取一点K,使得AKAC,连接CK,DK由PACDAK(SAS),推出PCDK,易知KDBC时,KD的值最小,求出KD的最小值即可解决问题【详解】解:如图作AHBC于H,ABAC20, , , ,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10AP的最小值是10;(2)如图,在AB上取一点K,使得AKAC,连接CK,DKACB90°,B30°,CAK60°,PADCAK,PACDAK,PADA,CAKA,PACDAK(SAS),PCDK,KDBC时,KD的值最小, , 是等边三角形, ,PC的最小值为5【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题4、【分析】根据旋转找出规律后再确定坐标【详解】正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,每6次翻转为一个循环组循环,经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,翻转前进的距离为:,如图,过点B作BGx于G,则BAG=60°,点B的坐标为故答案为:【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键5、22020【分析】根据,点的坐标是,得,点 的横坐标是,点 的横坐标是-,同理可得点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,点 的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标【详解】解:OA0A190°,A1OA060°,点A0的坐标是(1,0),OA01,点A1 的横坐标是 120,OA12OA02,A2A1O90°,A2OA160°,OA22OA14,点A2 的横坐标是- OA2-2-21, 依次进行下去,RtOA2A3,RtOA3A4,同理可得:点A3 的横坐标是2OA2823,点A4 的横坐标是823,点A5 的横坐标是 OA5×2OA42OA34OA21624,点A6 的横坐标是2OA52×2OA423OA36426,点A7 的横坐标是6426,发现规律,6次一循环,即,2021÷6=3365则点A2021的横坐标与的坐标规律一致是 22020故答案为:22020【点睛】本题考查了规律型点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为三、解答题1、(1)0,;(2);(3)【分析】(1)根据新定义,即可求解;(2)过点O作ODAB于点D,根据三角形的面积,可得,再由d(O,线段AB)=0,可得当O的半径等于OD时最小,当O的半径等于OB时最大,即可求解;(3)过点C作CNAB于点N ,利用锐角三角函数,可得OAB=60°,然后分三种情况:当点C在点A的右侧时,当点C与点A重合时,当点C在点A的左侧时,即可求解【详解】解:(1)O的半径为2,A(,0),B(0,),点A在O上,点B在O外,d(A,O),d(B,O);(2)过点O作ODAB于点D,点A(,0),B(0,) , , , ,d(O,线段AB)=0,当O的半径等于OD时最小,当O的半径等于OB时最大,r的取值范围是,(3)如图,过点C作CNAB于点N ,点A(,0),B(0,) , ,OAB=60°,C(m,0),当点C在点A的右侧时, , , ,d(C,线段AB)<1,C的半径为1, ,解得: ,当点C与点A重合时, ,此时d(C,线段AB)=0,当点C在点A的左侧时, , , ,解得: ,【点睛】本题主要考查了点与圆的位置关系,点与直线的位置关系,理解新定义,熟练掌握点与圆的位置关系,点与直线的位置关系是解题的关键2、(1)见解析;(2)2【分析】(1)连接OD,由与AB相切得,由HL定理证明由全等三角形的性质得,即可得证;(2)设的半径为,则,在中,得出关系式求出,可得出的长,在中,由正切值求出,在中,由勾股定理求出即可【详解】(1)如图,连接OD,与AB相切,在与中,平分;(2)设的半径为,则,在中,解得:,在中,即,在中,【点睛】本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键3、(1)见解析(2)【分析】(1)如图,连接OC,根据等腰三角形的性质可得CAB=ACO,即可得出FAC=ACO,可得AF/OC,根据平行线的性质可得AFC+OCF=180°,根据CFAF可得OCF=90°,即可得出CF是O的切线;(2)利用AAS可证明AFCAEC,可得SAFC=SAEC,根据垂径定理可得CE=DE,可得SBCD=2SBCE,根据AB是直径可得ACB=90°,根据角的和差关系可得BCE=CAB,根据正弦的定义可得,可得BE=,AB=,进而可得AE=,根据三角形面积公式即可得答案(1)(1)如图,连接OC,OA=OC,CAB=ACO,FAC=BAC,FAC=ACO,AF/OC,AFC+OCF=180°,CFAF,OCF=90°,即OCCF,CF是O的切线(2)在AFC和AEC中,AFCAEC,SAFC=SAEC,AB是O的直径,CDAB,CE=DE,SBCD=2SBCE,BCE+CBA=90°,CAB+CBA=90°,BCE=CBA,sinCAB=,sinCAB=sinBCE=,BE=,AB=,AE=,=故答案为:【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键4、(1)作图见解析;(2)【分析】(1)由于D点为O的切点,即可得到OC=OD,且ODAB,则可确定O点在A的角平分线上,所以应先画出A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出DCB的度数,然后进一步求出COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可【详解】解:(1)如图所示,先作A的角平分线,交BC于O点,以O为圆心,OC为半径画出O即为所求;(2)如图所示,连接CD和OD,由题意,AD为O的切线,OCAC,且OC为半径,AC为O的切线,AC=AD,ACD=ADC,CD=BD,B=DCB,ADC=B+BCD,ACD=ADC=2DCB,ACB=90°,ACD+DCB=90°,即:3DCB=90°,DCB=30°,OC=OD,DCB=ODC=30°,COD=180°-2×30°=120°,DCB=B=30°,在RtABC中,BAC=60°,AO平分BAC,CAO=DAO=30°,在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键5、(1)见解析;见解析;(2)【分析】(1)连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,结合扇形面积公式解题【详解】解:(1)连接OD,是BAC的平分线是O的切线;连接DE,是O的切线,是直径(2)连接DE、OD、DF、OF,设圆的半径为R,点F是劣弧AD的中点,OF是DA中垂线DF=AF,是等边三角形,四边形DOAF是菱形,【点睛】本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键