2022年最新强化训练沪科版九年级数学下册第26章概率初步难点解析试题(含详细解析).docx
沪科版九年级数学下册第26章概率初步难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然事件的是()A明天一定是晴天B购买一张彩票中奖C小明长大会成为科学家D13人中至少有2人的出生月份相同2、下列事件是随机事件的是( )A2021年全年有402天B4年后数学课代表会考上清华大学C刚出生的婴儿体重50公斤D袋中只有10个红球,任意摸出一个球是红球3、掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )ABCD4、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是( )ABCD5、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD6、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )A12B15C18D237、下列说法正确的有( )等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形无理数在和之间从,这五个数中随机抽取一个数,抽到无理数的概率是一元二次方程有两个不相等的实数根若边形的内角和是外角和的倍,则它是八边形A个B个C个D个8、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是( )ABCD9、不透明的袋子中有4个球,上面分别标有1,2,3,4数字,它们除标号外没有其他不同从袋子中任意摸出1个球,摸到标号大于2的概率是( )ABCD10、下列事件中,属于必然事件的是( )A小明买彩票中奖B在一个只有红球的盒子里摸球,摸到了白球C任意抛掷一只纸杯,杯口朝下D三角形两边之和大于第三边第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、佳禾同学2021年10月的某一天去电影院看电影长津湖,“买了一张电影票座位号是偶数”属于 _(填“必然事件”、“随机事件”或“不可能事件”)2、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_3、不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则它是黑球的概率是_4、某农科所为了了解新玉米种子的出芽情况,在推广前做了五次出芽实验,在相同的培育环境中分别实验,实验具体情况记录如下:种子数量10030050010003000出芽数量992824809802910随着实验种子数量的增加,可以估计A种子出芽的概率是 _5、某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数501003004006001000发芽频数4796284380571948估计这批青稞发芽的概率是_(结果保留到0.01)三、解答题(5小题,每小题10分,共计50分)1、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习用列表法或画树状图法求:(1)甲、乙都选择(窗花剪纸)课程的概率;(2)甲、乙选择同一门课程的概率2、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 (2)若甲、乙均可在本层移动黑色方块所构拼图是中心对称图形的概率是 用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率3、林肇路某路口南北方向红绿灯的设置时间为:红灯57s,绿灯60s,黄灯3s,小明的爸爸由北往南开车随机地行驶到该路口(1)他遇到红灯、绿灯、黄灯的概率各是多少?(2)我国新的交通法规定:汽车行驶到路口时,绿灯亮时才能通过,如果遇到黄灯亮或红灯亮时必须在路口外停车等候,问小明的爸爸开车随机到该路口,按照交通信号灯直行停车等候的概率是多少?4、2021年5月26日,长春国际马拉松开赛,小红和小雨参加了该赛事的志愿者服务工作,被随机分配到A“半程马拉松”,B“全程马拉松”,C“五公里”三个项目组(1)小雨被分配到C“五公里”项目组的概率为 ;(2)用画树状图(或列表)的方法,求小红和小雨被分到同一组的概率5、太原是国家历史文化名城,有很多旅游的好去处,周末哥哥计划带弟弟出去玩,放假前他收集了太原动物园、晋祠公园、森林公园、汾河湿地公园四个景点的旅游宣传卡片,这些卡片的大小、形状及背面完全相同,分别用D,J,S,F表示,如图所示,请用列表或画树状图的方法,求下列事件发生的概率(1)把这四张卡片背面朝上洗匀后,弟弟从中随机抽取一张,作好记录后,将卡片放回洗匀,哥哥再抽取一张,求两人抽到同一景点的概率;(2)把这四张卡片背面朝上洗匀后,弟弟和哥哥从中各随机抽取一张(不放回),求两人抽到动物园和森林公园的概率-参考答案-一、单选题1、D【分析】必然事件是在一定条件下,一定会发生的事件;根据定义对选项进行判断,得出结果【详解】解:A、B、C选项中的事件都是随机事件,不符合要求;D选项中13人中至少有2人的出生月份相同是必然事件,符合要求;故选D【点睛】本题考查了必然事件解题的关键在于正确理解必然事件与随机事件的定义2、B【分析】随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可【详解】解:A、2021年全年有402天,是不可能事件,不符合题意;B、4年后数学课代表会考上清华大学,是随机事件,符合题意;C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,故选:B【点睛】本题考查随机事件,理解随机事件的概念是解答的关键3、C【分析】根据骰子各面上的数字得到向上一面的点数可能是3或4,利用概率公式计算即可【详解】解:一枚质地均匀的骰子共有六个面,点数分别为1,2,3,4,5,6,点数大于2且小于5的有3或4,向上一面的点数大于2且小于5的概率是=,故选:C【点睛】此题考查了求简单事件的概率,正确掌握概率的计算公式是解题的关键4、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案【详解】解:有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是;故选:B【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比5、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比6、A【分析】由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可【详解】解:设盒子中红球的个数x,根据题意,得: 解得x=12,所以盒子中红球的个数是12,故选:A【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p7、A【分析】根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案【详解】解:菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;无理数在和之间,正确,故本选项符合题意;在,这五个数中,无理数有,共个,则抽到无理数的概率是,故本选项错误,不符合题意;因为,则一元二次方程有两个相等的实数根,故本选项错误,不符合题意;若边形的内角和是外角和的倍,则它是八边形,正确,故本选项符合题意;正确的有个;故选:【点睛】此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键8、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可【详解】解:列表如下:12123234由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为,故选:B【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率9、A【分析】根据题意,总可能结果有4种,摸到标号大于2的结果有2种,进而根据概率公式计算即可【详解】解:总可能结果有4种,摸到标号大于2的结果有2种,从袋子中任意摸出1个球,摸到标号大于2的概率是故选A【点睛】本题考查了简单概率公式求概率,掌握概率公式是解题的关键概率=所求情况数与总情况数之比10、D【分析】根据事件发生的可能性大小判断即可【详解】解;A、小明买彩票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件二、填空题1、随机事件【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件【详解】“买了一张电影票座位号是偶数”属于随机事件故答案为:随机事件【点睛】本题考查了随机事件的定义,熟悉定义是解题的关键2、8【分析】首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可【详解】解:大量重复试验后,发现摸出红球的频率稳定在0.2附近,摸出红球的概率为0.2,由题意,解得:,经检验,是原方程的解,且符合题意,故答案为:8【点睛】本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键3、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球3个从中任意摸出一球,摸出白色球的概率是故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键4、【分析】根据概率的公式解题:A种子出芽的概率=A种子出芽数量÷玉米种子总数量【详解】解:故答案为:【点睛】本题考查概率的意义,大量反复试验下频率稳定值即为概率,随机事件发生的概率在0至1之间5、0.95【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可【详解】观察表格得到这批青稞发芽的频率稳定在0.95附近,则这批青稞发芽的概率的估计值是0.95,故答案为:0.95【点睛】此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键三、解答题1、(1) ;(2)【分析】(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.【详解】解:(1)由题意列表,ABCDAA,AA,BA,CA,DBB,AB,BB,CB,DCC,AC,BC,CC,DDD,AD,BD,CD,D由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,所以甲、乙都选择(窗花剪纸)课程的概率为.(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,所以甲、乙选择同一门课程的概率为.【点睛】本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键用到的知识点为:概率=所求情况数与总情况数之比2、(1);(2);【分析】(1)直接由概率公式求解即可;(2)黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;画树状图,再由概率公式求解即可【详解】解:(1)若乙固定在E处,黑色方块甲,可在方格A、B、C中移动,且当在A、B处时,黑色方块构成的拼图是轴对称图形所以移动甲后黑色方块构成的拼图是轴对称图形的概率是;(2)甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是;画树状图如图:由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,黑色方块所构拼图是轴对称图形的概率【点睛】本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键3、(1)他遇到红灯、绿灯、黄灯的概率各是、;(2)【分析】(1)根据红灯、绿灯、黄灯的时间求出总时间,再利用概率公式即可得;(2)将遇到红灯和黄灯的概率相加即可得【详解】解:(1)红灯、绿灯、黄灯的总时间为,则他遇到红灯的概率是,遇到绿灯的概率是,遇到黄灯的概率是,答:他遇到红灯、绿灯、黄灯的概率各是、;(2),答:按照交通信号灯直行停车等候的概率是【点睛】本题考查了简单事件的概率,熟练掌握概率公式是解题关键4、(1);(2)【分析】(1)根据概率公式即可求解;(2)由题画出树状图,用小红和小雨被分到同一组的结果数比总的结果数即可得出答案【详解】(1)小雨可分配到A、B、C三个项目组,小雨被分配到C“五公里”项目组的概率为,故答案为:;(2)画出树状图如下所示:小红和小雨被分到同一组的有3种结果,总的有9种,小红和小雨被分到同一组的概率为【点睛】本题考查用列表格或树状图求概率,掌握树状图的画法和概率的求法是解题的关键5、(1);(2).【分析】(1)根据题意列表可得共有16种等可能的结果,其中两人抽到同一景点的结果有4种,进而由概率公式求解即可;(2)根据题意列表可得共有12种等可能的结果,其中两人抽到动物园和森林公园的结果有2种,进而由概率公式求解即可【详解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情况数为16种,两人抽到同一景点的结果有4种,所以两人抽到同一景点的概率为.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情况数为12种,其中两人抽到动物园和森林公园的结果有2种,所以两人抽到动物园和森林公园的概率为.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率