模拟测评2022年河北省邢台市中考数学三年真题模拟-卷(Ⅱ)(含答案详解).docx
-
资源ID:32538920
资源大小:796.81KB
全文页数:26页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
模拟测评2022年河北省邢台市中考数学三年真题模拟-卷(Ⅱ)(含答案详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年河北省邢台市中考数学三年真题模拟 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用四舍五入法按要求对0.7831取近似值,其中正确的是( )A0.783(精确到百分位)B0.78(精确到0.01)C0.7(精确到0.1)D0.7830(精确到0.0001)2、如图,反比例函数图象经过矩形边的中点,交边于点,连接、,则的面积是( )ABCD3、若分式的值为0,则x的值是()A3或3B3C0D34、观察下列算式,用你所发现的规律得出的个位数字是( ),A2B4C6D85、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个设甲种陀螺单价为x元,根据题意列方程为( )ABCD6、下面几何体是棱柱的是( )ABCD7、甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=8、下列各数中,是无理数的是( )ABCD9、当n为自然数时,(n1)2(n3)2一定能被下列哪个数整除()A5B6C7D810、如图,在数轴上有三个点A、B、C,分别表示数,5,现在点C不动,点A以每秒2个单位长度向点C运动,同时点B以每秒个单位长度向点C运动,则先到达点C的点为( )· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·A点AB点BC同时到达D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一种商品,连续两次降价后,其售价是原来的四分之一若每次降价的百分率都是,则满足的方程是_2、已知圆锥的底面周长为,母线长为则它的侧面展开图的圆心角为_度3、已知二次函数与反比例函数的图像在第二象限内的一个交点的横坐标是2,则m的值是_4、己知,为锐角的外心,那么_5、,则的余角的大小为_三、解答题(5小题,每小题10分,共计50分)1、小丽从家到学校有公路和小路两种路径,已知公路比小路远320米早上小丽以61米/分钟的速度从公路去上学,10分钟后,爸爸发现她的作业忘带了,就以90米/分钟的速度沿小路去追赶,结果恰好在学校门口追上小丽问小丽从家到学校的公路有多少米?2、在平面直角坐标系中,抛物线(m为常数)的顶点为M,抛物线与直线交于点A,与直线交于点B,将抛物线在A、B之间的部分(包含A、B两点且A、B不重合)记作图象G(1)当时,求图象G与x轴交点坐标(2)当x轴时,求图象G对应的函数值y随x的增大而增大时x的取值范围(3)当图象G的最高点与最低点纵坐标的差等于1时,求m的取值范围(4)连接AB,以AB为对角线构造矩形AEBF,并且矩形的各边均与坐标轴垂直,当点M与图象G的最高点所连线段将矩形AEBF的面积分为两部分时,直接写出m值3、如图,在平面直角坐标系中,抛物线与直线交于,两点,其中,(1)求该抛物线的函数表达式;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,过点和点分别作轴的平行线交直线于点和点,连接,求四边形面积的最大值;(3)在(2)的条件下,将抛物线沿射线平移个单位,得到新的抛物线,点为点的对应点,点为的对称轴上任意一点,点为平面直角坐标系内一点,当点,构成以为边的菱形时,直接写出所有符合条件的点的坐标,并任选其中一个点的坐标,写出求解过程4、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长(单位长度),慢车长(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且与互为相反数· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A和C相距8个单位长度(3)此时在快车AB上有一位爱动脑筋的六年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A,C的距离和加上到两列火车尾B,D的距离和是一个不变的值(即为定值)你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由5、已知抛物线yx2+x(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n1,y2)两点若n5,判断y1与y2的大小关系并说明理由;若A,B两点在抛物线的对称轴两侧,且y1y2,直接写出n的取值范围-参考答案-一、单选题1、B【分析】精确到某一位,即对下一位的数字进行四舍五入;0.783(精确到千分位),0.7831(精确到0.1)是0.8【详解】A. 0.783(精确到千分位), 所以A选项错误;B、0.78(精确到0.01),所以B选项正确;C、0.8(精确到0.1),所以C选项错误;D、0.7831(精确到0.0001),所以D选项错误;故选:B【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字2、B【分析】连接OB首先根据反比例函数的比例系数k的几何意义,得出SAOE=SCOF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则SBEF=SOCF=0.75,最后由SOEF=S矩形AOCBSAOESCOFSBEF,得出结果【详解】连接OBE、F是反比例函数y=(x0)图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=1.5矩形OABC边AB的中点是E,SBOE=SAOE=1.5,SBOC=SAOB=3,SBOF=SBOCSCOF=31.5=1.5,F是BC的中点,SOEF=S矩形AOCBSAOESCOFSBEF=61.51.50.5×1.5=故选B【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题主要考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|得出点F为BC的中点是解决本题的关键3、A【分析】根据分式的值为零的条件可以求出x的值【详解】依题意得:x290且x0,解得x±3故选A【点睛】本题考查了分式的值等于0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可4、D【分析】通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期3,所以的个位数字应该与的个位数字相同,所以的个位数字是8【详解】解:通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期3,所以的个位数字应该与的个位数字相同,所以的个位数字是8故选D【点睛】本题主要考查了数字类的规律问题,解题的关键在于能够准确找到相关规律5、C【分析】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程【详解】首先设甲种陀螺单价为x元,则乙种陀螺单价为元,根据题意可得:,故选:C【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程6、A【分析】根据棱柱:有两个面互相平行且相等,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱作答【详解】解:A、符合棱柱的概念,是棱柱B、是棱锥,不是棱柱;C、是球,不是棱柱;D、是圆柱,不是棱柱;故选A【点睛】本题主要考查棱柱的定义棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等7、A· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键8、C【分析】根据无理数的概念:无限不循环小数,由此可进行排除选项【详解】解:A是分数,是有理数,选项不符合题意;B,是整数,是有理数,选项不符合题意;C是无理数,选项符合题意;D是整数,是有理数,选项不符合题意故选C【点睛】本题主要考查无理数的概念,熟练掌握无理数的概念是解题的关键9、D【分析】用平方差公式进行分解因式可得【详解】(n+1)2(n3)2=(n+1+n3)(n+1n+3)=8(n1),且n为自然数,(n+1)2(n3)2能被8整除故选D【点睛】本题考查了因式分解的应用,关键是能用平方差公式熟练分解因式10、A【分析】先分别计算出点A与点C之间的距离为10,点B与点C之间的距离为8.5,再分别计算出所用的时间【详解】解:点A与点C之间的距离为:,点B与点C之间的距离为:,点A以每秒2个单位长度向点C运动,所用时间为(秒);同时点B以每秒个单位长度向点C运动,所用时间为(秒);故先到达点C的点为点A,故选:A【点睛】本题考查了数轴,解决本题的关键是计算出点A与点C,点B与点C之间的距离二、填空题1、【分析】可设原价为1,关系式为:原价×(1降低的百分率)2=现售价,把相关数值代入即可· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·【详解】设原价为1,则现售价为,可得方程为:1×(1x)2=故答案为1×(1x)2=【点睛】考查列一元二次方程;掌握连续两次变化的关系式是解决本题的关键2、【分析】根据弧长=圆锥底面周长=4,弧长=计算【详解】由题意知:弧长=圆锥底面周长=4cm,=4,解得:n=240故答案为240【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系3、-7【详解】已知二次函数y=-4x2-2mx+m2与反比例函数y=的图象在第二象限内的一个交点的横坐标是-2,交点的纵坐标一定是同一个数值,因而把x=-2分别代入解析式,得到的两个函数值一定相同,就得到一个关于m的方程,从而求出m的值解:根据题意得:-4×4+4m+m2=,解得:m=-7或2又交点在第二象限内,故m=-74、【解析】【分析】根据外心的概念及圆周角定理即可求出答案.【详解】O是ABC的外心,O为ABC的外接圆圆心,BOC是弧BC所对圆心角,BAC是弧BC所对圆周角,BAC=BOC=40°,故答案为:40°【点睛】本题考查外心的概念及圆周角定理,外心是三角形外接圆的圆心,同弧所对的圆周角等于圆心角的一半,熟练掌握外心的概念及圆周角定理是解题关键·.5、【分析】根据互为余角的两个角的和为90度即可得出答案【详解】解:的余角的大小为故答案为:【点睛】本题考查两角互余的概念:和为90度的两个角互为余角熟记定义是解答本题的关键三、解答题· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·1、1220米【分析】设小丽从家到学校的时间为x分钟,根据小丽所走路程比爸爸所走路程多320米列方程即可【详解】解:设小丽从家到学校的时间为x分钟根据题意,得:61x-90(x-10)=320解这个方程得:x=2020×61=1220(米)答:小丽从家到学校的公路有1220米【点睛】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键2、(1)(,0)(2)(3)(4)-3.5或-5或0或【分析】(1)求出抛物线解析式和点A、B的坐标,确定图象G的范围,求出与x轴交点坐标即可;(2)和代入,根据纵坐标相等求出m的值,再根据二次函数的性质写出取值范围即可;(3)分别求出抛物线顶点坐标和点A、B的坐标,根据图象G的最高点与最低点纵坐标的差等于1,列出方程和不等式,求解即可;(4)求出A、B两点坐标,再求出直线AM、BM的解析式,根据将矩形AEBF的面积分为两部分,列出方程求解即可(1)解:当时,抛物线解析式为,直线为直线,即y轴;此时点A的坐标为(0,-2);当时,点B的坐标为(-3,1);当y=0时,解得,舍去;图象G与x轴交点坐标为(,0)(2)解:当轴时,把和代入得,解得,当时,点A、B重合,舍去;当时,抛物线解析式为,对称轴为直线,点A的坐标为(-1,-7),点B的坐标为(-3,-7);因为,所以,图象G对应的函数值y随x的增大而增大时x的取值范围为:;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)解:抛物线化成顶点式为,顶点坐标为: ,当时,点A的坐标为,当时,点B的坐标为,点A关于对称轴的对称点的坐标为,当时,此时图象G的最低点为顶点,则,解得,(舍去),当,时,此时图象G的最低点为顶点,则,等式恒成立,则,当时,此时图象G的最低点为B,图象G的最高点为A,则,解得,(舍去),综上,m的取值范围为(4)解:由前问可知,点A的坐标为,点B的坐标为,点M的坐标为,设直线AM、BM的解析式分别为,把点的坐标代入得,解得,所以,直线AM、BM的解析式分别为,如图所示,BM交AE于C,把代入得,解得,因为,点M与图象G的最高点所连线段将矩形AEBF的面积分为两部分,所以,解得,(此时,A、B两点重合,舍去);如图所示,BM交AF于L,同理可求L点纵坐标为:,可列方程为,解得,(此时,A、B两点重合,舍去);· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·如图所示,AM交BF于P,同理可求P点横坐标为:,可列方程为,解得,(此时,A、B两点重合,舍去);如图所示,AM交EB于S,同理可求S点纵坐标为:,可列方程为,解得,(此时,A、B两点重合,舍去);综上,m值为-3.5或-5或0或【点睛】本题考查了二次函数的综合,解题关键是熟练运用二次函数知识,树立数形结合思想和分类讨论思想,通过点的坐标,建立方程求解3、(1)抛物线表达式为;(2)当时,S四边形PQDC最大=;(3)所有符合条件的点的坐标()或()或()或()【分析】(1)利用待定系数法求抛物线解析式抛物线过,两点,代入坐标得:,解方程组即可;(2)根据点的横坐标为,点的横坐标为,得出,解不等式组得出,用m表示点P,点Q,用待定系数法求出AB解析式为,用m表示点C,点D,利用两点距离公式求出PC=,QD=,利用梯形面积公式求出S四边形PQDC=即可;(3)根据勾股定理求出AB=,将抛物线配方,根据平移,得出抛物线向右平移4个单位,再向下平移2个单位, 求出新抛物线,根据, 求出点P,与对应点E,平移后新抛物线对称轴为,设点G坐标为,点F()分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,求出点F(),(),当点F· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·()时,点G、F、E、B坐标满足,得出 G(),点F()时,点G3、F、E、B坐标满足, ,得出G3(),四边形BEFG为菱形,BE=BF,根据勾股定理,点F(),(),点F()时,点G1、F、E、B坐标满足, ,得出 G1(),点F()时,点G2、F、E、B坐标满足,得出G2()【详解】解:(1)抛物线过,两点,代入坐标得:,解得:,抛物线表达式为;(2)点,为直线下方抛物线上任意两点,且满足点的横坐标为,点的横坐标为,解得,点P,点Q设AB解析式为,代入坐标得:,解得:,AB解析式为,点C,点DPC=,QD=S四边形PQDC=,当时,S四边形PQDC最大=;(3)AB=,抛物线向右平移4个单位,再向下平移2个单位, ,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·点P,对应点E,平移后新抛物线对称轴为,设点G坐标为,点F(),分两类四种种情况,四边形BEFG为菱形,BE=EF,根据勾股定理,或,点F(),(),当点F()时,点G、F、E、B坐标满足:,解得,解得,G();点F()时,点G3、F、E、B坐标满足:,解得,解得,G3();四边形BEFG为菱形,BE=BF,根据勾股定理,或,点F(),(),点F()时,点G1、F、E、B坐标满足:,解得,解得,G1();点F()时,点G2、F、E、B坐标满足:,解得,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,解得,G2(),综合所有符合条件的点的坐标()或()或()或()【点睛】本题考查待定系数法求抛物线解析式与直线解析式,两点距离,梯形面积,二次函数顶点式最值,抛物线平移,菱形性质,图形与坐标,本题难度大,解题复杂,计算要求非常准确,考查学生多方面能力,知识掌握情况,阅读,分类,数形结合,运算,画图是中考难题4、(1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度【分析】(1)根据非负数的性质求出a6,b8,求差即可求解;(2)根据时间路程和÷速度和,设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,列方程即可求解;(3)由于PA+PBAB2,只需要PC+PD是定值,从快车AB上乘客P与慢车CD相遇到完全离开之间都满足PC+PD是定值,依此分析即可求解(1)解:(1)|a+6|与(b8)2互为相反数,|a+6|+(b8)20,a+60,b80,解得a6,b8此时刻快车头A与慢车头C之间相距8(6)14(单位长度);答:此时快车头A与慢车头C之间相距14单位长度;(2)解:设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,两车相遇前可列方程为,解得,两车相遇后可列方程为,解得,答:再行驶0.75秒或2.75秒两列火车行驶到车头AC相距8个单位长度;(3)正确,PA+PBAB2,当P在CD之间时,PC+PD是定值4,即路程为4,所以,行驶时间t4÷(6+2)4÷80.5(秒),· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·此时PA+PC+PB+PD(PA+PB)+(PC+PD)2+46(单位长度)故这个时间是0.5秒,定值是6单位长度【点睛】本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间路程÷速度,根据数形结合的思想理解和解决问题5、(1)直线x1,(0,0)(2)y1y2,理由见解析;1n【分析】(1)由对称轴公式即可求得抛物线的对称轴,令x0,求得函数值,即可求得抛物线与y轴的交点坐标;(2)由n5,可得点A,点B在对称轴直线x1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解(1)yx2+x,对称轴为直线x1,令x0,则y0,抛物线与y轴的交点坐标为(0,0);(2)xAxB(3n+4)(2n1)n+5,xA1(3n+4)13n+33(n+1),xB1(2n1)12n22(n1)当n5时,xA10,xB10,xAxB0A,B两点都在抛物线的对称轴x1的左侧,且xAxB,抛物线yx2+x开口向下,在抛物线的对称轴x1的左侧,y随x的增大而增大y1y2;若点A在对称轴直线x1的左侧,点B在对称轴直线x1的右侧时,由题意可得,不等式组无解,若点B在对称轴直线x1的左侧,点A在对称轴直线x1的右侧时,由题意可得:,1n,综上所述:1n【点睛】本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键