强化训练2022年河北省邢台市中考数学模拟测评-卷(Ⅰ)(精选).docx
-
资源ID:32539215
资源大小:1.08MB
全文页数:35页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
强化训练2022年河北省邢台市中考数学模拟测评-卷(Ⅰ)(精选).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年河北省邢台市中考数学模拟测评 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式:中,分式有( )A1个B2个C3个D4个2、某件商品先按成本价加价50%后标价,再以九折出售,售价为135元,若设这件商品的成本价是x元,根据题意,可得到的方程是( )ABCD3、下列计算: 0(5)=0+(5)=5; 53×4=512=7; 4÷3×()=4÷(1)=4; 122×(1)2=1+2=3其中错误的有()A1个B2个C3个D4个4、下列分式中,最简分式是( )ABCD5、已知,则( )ABCD6、已知A与B的和是90°,C与B互为补角,则C比A大()A180°B135°C90°D45°7、在O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD如图,若点D与圆心O不重合,BAC25°,则DCA的度数()A35°B40°C45°D65°8、下面几何体是棱柱的是( )ABCD9、分式方程有增根,则m为( )A0B1C3D610、如图,在ABC中,C=20°,将ABC绕点A顺时针旋转60°得到ADE,AE与BC交于点F,则AFB的度数是()· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一元二次方程的根是 2、如图,半圆O的直径AE4,点B,C,D均在半圆上若ABBC,CDDE,连接OB,OD,则图中阴影部分的面积为_.3、如图,若满足条件_,则有ABCD,理由是_(要求:不再添加辅助线,只需填一个答案即可)4、如图,在中,F是边上的中点,则_1(填“>”“=”或“<”)5、关于x的一元二次方程(m5)x2+2x+2=0有实根,则m的最大整数解是_三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线与轴交于两点,与轴交于点,直线与抛物线交于两点,与轴交于点,且点为;(1)求抛物线及直线的函数关系式;(2)点为抛物线顶点,在抛物线的对称轴上是否存点,使为等腰三角形,若存在,求出点的坐标;(3)若点是轴上一点,且,请直接写出点的坐标2、如图,是数轴的原点,、是数轴上的两个点,点对应的数是,点对应的数是,是线段上一点,满足(1)求点对应的数;(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,当点到达点后停留秒钟,然后继续按原速沿数轴向右匀速运动到点后停止在点从点出发的同时,动点从点出发,以每秒个单位长度的速度沿数轴匀速向左运动,一直运动到点后停止设点的运动时间为秒当时,求的值;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·在点,出发的同时,点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,当点与点相遇后,点立即掉头按原速沿数轴向右匀速运动,当点与点相遇后,点又立即掉头按原速沿数轴向左匀速运动到点后停止当时,请直接写出的值3、如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点B(3,1)、C(2,6),与y轴交于点A,对称轴为直线x1(1)求抛物线的表达式;(2)求ABM的面积;(3)点P是抛物线上一点,且PMBABM,试直接写出点P的坐标4、如图,在矩形ABCD中,E是CD边上的一点,M是BC边的中点,动点P从点A出发沿边AB以的速度向终点B运动,过点P作于点H,连接EP设动点P的运动时间是(1)当t为何值时,?(2)设的面积为,写出与之间的函数关系式(3)当EP平分四边形PMEH的面积时,求t的值(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由5、如图1,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点(1)求、两点的坐标;(2)连接,点为直线上方抛物线上(不与、重合)的一动点,过点作交于点,轴交于点,求的最大值及此时点的坐标;(3)如图2,将原抛物线沿射线方向平移个单位得到新抛物线,点为新抛物线对称轴上一点,在新抛物线上是否存在一点,使以点、为顶点的四边形为平行四边形,若存在,请直接写出点的坐标,并选择一个你喜欢的点写出求解过程;若不存在,请说明理由-参考答案-一、单选题1、B【分析】根据分式的定义判断即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:,是分式,共2个,故选B【点睛】本题考查分式,解题的关键是正确理解分式的定义,本题属于基础题型2、A【分析】设这件商品的成本价为x元,售价=标价×90%,据此列方程【详解】解:标价为,九折出售的价格为,可列方程为故选:A【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程3、C【分析】根据有理数的减法法则可判断;先算乘法、再算减法,可判断;根据有理数的乘除运算法则可判断;根据有理数的混合运算法则可判断,进而可得答案.【详解】解:,所以运算错误;,所以运算正确;4÷3×()=4××()=,所以运算错误;122×(1)2=12×1=3,所以运算错误综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.4、C【详解】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分【详解】A、分式的分子与分母中的系数34和85有公因式17,可以约分,故A错误;B、=yx,故B错误;C、分子分母没有公因式,是最简分式,故C正确;D、=,故D错误,故选C【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分5、A【分析】先把C45.15°化成15°9的形式,再比较出其大小即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:,即故选:A【点睛】本题考查的是角的大小比较,熟知度、分、秒的换算是解答此题的关键6、C【分析】根据补角的定义进行分析即可.【详解】解:A+B90°,B+C180°,CA90°,即C比A大90°,故选C【点睛】考核知识点:补角.理解补角的数量关系是关键.7、B【分析】首先连接BC,由AB是直径,可求得ACB=90°,则可求得B的度数,然后由翻折的性质可得,弧AC所对的圆周角为B,弧ABC所对的圆周角为ADC,继而求得答案【详解】连接BC,AB是直径,ACB=90°,BAC=25°,B=90°BAC=90°25°=65°,根据翻折的性质,弧AC所对的圆周角为B,弧ABC所对的圆周角为ADC,ADC+B=180°,B=CDB=65°,DCA=CDBA=65°25°=40°.故选B.【点睛】本题考查圆周角定理,连接BC是解题的突破口.8、A【分析】根据棱柱:有两个面互相平行且相等,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱作答【详解】解:A、符合棱柱的概念,是棱柱B、是棱锥,不是棱柱;C、是球,不是棱柱;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·D、是圆柱,不是棱柱;故选A【点睛】本题主要考查棱柱的定义棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等9、C【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的值,让最简公分母x30,得到x3,然后代入整式方程算出m的值【详解】解:方程两边都乘x3,得x+x-3m原方程有增根,最简公分母x30,解得x3,将x3代入x+x-3m,得m3,故m的值是3故选C【点睛】本题考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值10、C【分析】先根据旋转的性质得CAE=60°,再利用三角形内角和定理计算出AFC=100°,然后根据邻补角的定义易得AFB=80°【详解】ABC绕点A顺时针旋转60°得ADE, CAE=60°, C=20°, AFC=100°, AFB=80° 故选C【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等二、填空题1、【详解】解:用因式分解法解此方程,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·即.故答案为:.【点睛】本题考查解一元二次方程.掌握解一元二次方程的方法,选择适合的方法可以简便运算2、【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解【详解】如图,连接CO,AB=BC,CD=DE,BOC+COD=AOB+DOE90°,AE=4,AO=2,S阴影【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系解答本题的关键是得出阴影部分的面积等于扇形BOD的面积3、答案不唯一,如; 同位角相等,两直线平行 【分析】根据平行线的判定(同位角相等、内错角相等或同旁内角互补)写出一组条件即可.【详解】若根据同位角相等,判定可得:,AB/CD(同位角相等,两直线平行).故答案是:答案不唯一,如; 同位角相等,两直线平行.【点睛】考查了平行线的判定解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,再根据平行线的判定定理(同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行)解题4、<【分析】连接AE,先证明得出,根据三角形三边关系可得结果【详解】如图,连接,在和中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,在中,F是边上的中点,故答案为:<【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键5、m=4【详解】分析:若一元二次方程有实根,则根的判别式=b24ac0,建立关于m的不等式,求出m的取值范围还要注意二次项系数不为0详解:关于x的一元二次方程(m5)x2+2x+2=0有实根,=48(m5)0,且m50,解得m5.5,且m5,则m的最大整数解是m=4故答案为m=4点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3)0方程没有实数根三、解答题1、(1),;(2),;(3)或【分析】(1)利用待定系数法解决问题即可;(2)先求出AF长,再根据AF为腰或底边分三种情况进行讨论,即可解答;(3)如图2中,将线段绕点逆时针旋转得到,则,设交轴于点,则,作点关于的对称点,设交轴于点,则,分别求出直线,直线的解析式即可解决问题(1)抛物线与轴交于、两点,设抛物线的解析式为,在抛物线上,解得,抛物线的解析式为,直线经过、,设直线的解析式为,则,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解得,直线的解析式为;(2)抛物线,顶点坐标,当点A为顶点,AF为腰时,AF=AG,此时点G与点F是关于x轴的对称,故此时;当点F为顶点,AF为腰时,FA=FG,此时当点G为顶点,AF为底时,设,解得,综上所述:(3)如图,将线段绕点逆时针旋转得到,则,设交轴于点,则,直线的解析式为,将线段绕点顺时针旋转得到,则直线的解析式为,设交轴于点,则,综上所述,满足条件的点的坐标为或【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·题,属于中考压轴题2、(1);(2),;或或5【分析】(1)设点C对应的数为c,先求出AC=c-(-1)=c+1,BC=8-c,根据,变形,即,解方程即可;(2)点M、N在相遇前,先求出点M表示的数:-1+2t,点N表示的数为:8-t,根据,列方程,点M、N相遇后,求出点M过点C,点M表示的数为-1+2(t-2)=-5+2t,根据,列方程,解方程即可;点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,先求点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,确定点P与M,N位置,当时,列方程,当点P与点N相遇时,3(t-1)+t-1=7-1解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,根据当时,列方程5.5-3(t-2.5)-4=25.5-(t-2.5)-5.5-3(t-2.5),点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,列方程,解方程即可(1)解:设点C对应的数为c,AC=c-(-1)=c+1,BC=8-c,即,解得;(2)解:点M、N在相遇前,点M表示的数:-1+2t,点N表示的数为:8-t,解得,点M、N相遇后,点M过点C,点M表示的数为-1+2(t-2)=-5+2t,解得,MN=4时,或;点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,点M与点P在1位置,点N在7位置,点P掉头,PM=3(t-1)-2(t-1),PN=8-t-1-3 (t-1),· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·当时,,解得,当点P与点N相遇时,3(t-1)+t-1=7-1,解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,当时,5.5-3(t-2.5)-4=25.5-(t-2.5)-5.5-3(t-2.5),解得;点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,PM=2(t-2)-1-(-1)=2t-2,PN=8-t-(-1)=9-t,即,解得;综合得当时, 的值为或或5【点睛】本题考查数轴上动点问题,两点间的距离,列代数式,相遇与追及问题,列方程,分类考虑动点的位置,根据等量关系列方程是解题关键3、(1)y=x2-2x-2(2)3(3)(8,46)或(2,-2)【分析】(1)由题意设抛物线解析式为y=ax2+bx+c,依题意得出三元一次方程组,解方程得出a、b、c的值,即可求出抛物线的解析式;(2)根据题意连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,求出直线AB的解析式,求出点Q的坐标,得出MQ的长,再利用SABM=SMQA+SMQB,即可求出ABM的面积;(3)根据题意分PM在AB的左侧和右侧两种情况进行讨论,即可得出点P的坐标(1)解:(1)设抛物线解析式为y=ax2+bx+c,抛物线经过点B(3,1)、C(-2,6),对称轴为直线x=1,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解得:,设抛物线解析式为:y=x2-2x-2.(2)如图1,连接AB,过点M作y轴的平行线交AB于点Q,连接AM、BM,当x=0时,y=-2,当x=1时,y=-3,A(0,-2),M(1,-3),设直线AB的解析式为y=mx+n,把A(0,-2),B(3,1)代入得:,解得:,y=x-2,当x=1时,y=-1,Q(1,-1),MQ=-1-(-3)=2,SABM=SMQA+SMQB=MQ|xB-xA|=×2×|3-0|=3.(3)如图2,分两种情况分类讨论:当PM在AB的左侧时,PM交AB于点D,设D(t,t-2),B(3,1)、M(1,-3),PMB=ABM,BD=MD,解得:t=,D(,),· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·设直线MD的解析式为y=kx+b,解得:,直线MD的解析式为y=7x-10,解得: (舍去),P(8,46),当PM在AB的右侧时,PM交抛物线于点P,PMB=ABM,ABPM,设直线MP的解析式为y=x+d,把M(1,-3)代入得:-3=1+d,d=-4,直线MP的解析式为y=x-4,解得: (舍去),P(2,-2),综上所述,点P的坐标为(8,46)或(2,-2)【点睛】本题考查二次函数综合题,熟练掌握并利用待定系数法和分类讨论的思想进行分析是解决问题的关键4、(1)t;(2)yt26t(0t14);(3)t;(4)【分析】(1)通过证明CEMBMP,可得,即可求解;(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;(3)由SEHPSEMP,列出等式可求解;(4)由对称性可得AEPBEP,由角平分线的性质可得PFPH,由面积关系可求解【详解】解:(1)四边形ABCD是矩形AB=CD,BC=ADM是BC边的中点,CMBM6cm,DE=9cm,EC5cm,PMEM,PMBCME90°,又BMPBPM90°,BPMEMC,又BC90°,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·CEMBMP,t;(2)四边形ABCD是矩形,D90°,AE2AD2DE2,AD=12cm,DE=9cm,AEcm,ABCD,DEAEAB,sinDEAsinEAB,HPt,AHt,HE15t,SEHP×EH×HP,y(15t)×tt26t(0t14);(3)EP平分四边形PMEH的面积,SEHPSEMP,(15t)×t×12×(514t)×6×(14t)×6×5,解得:t1=,t2=0t14,t;(4)如图2,连接BE,过点P作PFBE于F,点B关于PE的对称点,落在线段AE上,AEPBEP,又PHAE,PFBE,PFPHt,EC5cm,BC12cm,BEcm,SABESAEPSBEP,×14×12×(1513)×t,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·t【点睛】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键5、(1),;(2),(3)或【分析】(1)分别令和即可求出函数图象与坐标轴相应的交点坐标;(2)运用待定系数法求出直线AC的解析式,设,求出,证明可求出,得,根据二次函数的性质可得结论;(3)在射线CB上取一点Q,使,过点Q作轴于点G,证明得,根据平行四边形的性质和平移的性质分两种情况求解即可(1)在中,令,令,即解得,(2)设直线AC的解析式为把两点的坐标分别代入中,得,解得,直线AC的解析式为:点为直线上方抛物线上(不与A、重合)的一动点,设轴,/y轴,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,即,当时,有最大值,的最大值为当时, 此时,(3)在射线CB上取一点Q,使,过点Q作轴于点G,则,如图,即· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·将抛物线沿射线CB方向平移个单位得到新抛物线 相当于抛物线y=先向右平移3个单位,再向下平移个单位新抛物线的对称轴为x=2,点M为新抛物线对称轴上一点点M的横坐标为2当四边形ACMN为平行四边形时,如图,根据平行四边形的性质可知,AC/NM,AC=NM由图可知,将点C先向右平移2个单位,再向下平移若干个单位得到点M,将点先向右平移2个单位,再向下平移若干个单位得到点N,点N的横坐标为:当时,此时,点N的坐标为将点先向右平移2个单位,再向下平移个单位得到点,将点先向右平移2个单位,再向下平移个单位得到点M,此时点M的坐标为当四边形ACNM为平行四边形时,如图根据平行四边形的性质可知,AC/MN,AC=MN由嵊可知,将点先向右平移5个单位,再向下平移若干个单位得到点M,将点先向右平移5个单位,再向下平移若干个单位得到点N,点N的横坐标为· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · ·