2021-2022学年度沪科版九年级数学下册第25章投影与视图难点解析试卷(无超纲).docx
-
资源ID:32539331
资源大小:454.20KB
全文页数:20页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度沪科版九年级数学下册第25章投影与视图难点解析试卷(无超纲).docx
沪科版九年级数学下册第25章投影与视图难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的俯视图是( )ABCD2、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为( )A6B7C10D13、如图,几何体的左视图是( )ABCD4、如图所示的几何体,它的左视图是()ABCD5、如图所示的几何体的左视图是( )ABCD6、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为()ABCD7、如图所示的几何体的主视图是()ABCD8、如图,由一个圆柱体和一个长方体组成的几何体,其左视图是( )ABCD9、分别从正面、左面和上面三个方向看下面哪个几何体,能得到右图所示的平面图形( )ABCD10、下列立体图形的主视图是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,最多和最少需要的小立方块相差_个2、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是_3、一块直角三角形板,测得边的中心投影长为,则长为_4、一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状图如下,那么搭成这样一个几何体,最少需要a个这样的小立方块,最多需要b个这样的小立方块,则a-b _5、如图是一个几何体的三视图,则这个几何体的表面积为_三、解答题(5小题,每小题10分,共计50分)1、一个几何体的三个视图如图所示(单位:cm)(1)写出这个几何体的名称: ;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积2、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉 个立方块3、如图,这个几何体是由若干个棱长为1cm的小正方体搭成的(1)请画出从正面、左面、上面看到的几何体的形状图(2)求出从正面、左面、上面看到的几何体的表面积之和是多少4、如图是由六个棱长为1 cm的小正方体组成的几何体(1)该几何体的表面积是(含下底面) cm2;(2)分别画出该立体图形的三视图5、如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有_块小正方体;(2)该几何体从正面看所得到的平面图形如图所示,请你在下面方格纸中分别画出从左边看和从上边看它所得到的平面图形-参考答案-一、单选题1、D【分析】根据从上边看得到的图形是俯视图,可得答案【详解】解:结合所给几何体,其俯视图应为一个正方形,然后在正方形内部的左下角还有一个小长方形,故选D【点睛】本题主要考查了简单几何体的三视图,熟知三视图的定义是解题的关键2、C【分析】从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可【详解】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块故选:C【点睛】题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键3、D【分析】根据从左边看得到的图形是左视图,可得答案【详解】根据左视图的定义可知,这个几何体的左视图是选项D,故选:D【点睛】本题考查简单组合体的三视图,解题的关键是理解三视图的定义4、C【分析】根据几何体的左面是一个圆环即可得左视图【详解】由于几何体的左面是一个圆环,故其左视图也是一个圆环,且小圆是实线故选:C【点睛】本题考查了三视图,根据所给几何体正确画出三视图是关键5、D【分析】根据左视图的定义即可得【详解】解:左视图是指从左面观察几何体所得到的视图,这个几何体的左视图是,故选:D【点睛】本题考查了左视图,熟记定义是解题关键6、C【分析】先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得【详解】解:由题意得:观察这个立体图形的正面如下:则它的俯视图为故选:C【点睛】本题考查了三视图,掌握理解俯视图的定义是解题关键7、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,如图:故选:A【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键8、A【分析】从左边看过去:可以看到上下两个宽度相同的长方形,从而可以得到左视图.【详解】解:从左边看过去:可以看到上下两个宽度相同的长方形,所以一个圆柱体和一个长方体组成的几何体,其左视图是A选项中的图形,故选A【点睛】本题考查的是三视图,掌握“三视图中的左视图”是解本题的关键,注意的是能看到的棱要以实线来体现,看不见的棱要以虚线来体现.9、D【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱【详解】解:主视图和左视图都是长方形,此几何体为柱体,俯视图是一个三角形,此几何体为三棱柱故选:D【点睛】本题主要考查了由三视图判断几何体,解题的关键是熟练掌握由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状10、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图二、填空题1、5【分析】根据正面看与上面看的图形,得到俯视图中最左的一列都为3层,第2列都为2层,第3列为1层,得到最多共3+3+3+2+2+1=14个小正方体,再根据正面看与上面看的图形,得到俯视图中的第1列只有一处为3层,其余为1层,分三种情况考虑:最底层为3层,中间为3层,上面为3层;第2列只有一处为2层,上面或下面;第3列为1层,最少需要1+1+3+1+2+1=9个小正方体【详解】解:由题意可得:最多需要14个小正方体,最少需要9个正方体,相差14-9=5个,故答案为:5【点睛】本题考查几何体的三视图由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字2、【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可【详解】解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据主视图中给定数据可知圆锥的母线长是3,底面圆的直径是4,圆柱的高是2,因此圆锥的侧面积为:圆柱的侧面积为:底面圆的面积为:因此这个几何体的表面积为:故答案为:【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键3、【分析】由题意易得ABC,根据相似比求解即可【详解】解:,24,即,故答案为:【点睛】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用,解题的关键是利用中心投影的特点可知这两组三角形相似,利用其相似比作为相等关系求出所需要的线段4、2【分析】由正面看可得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,即a=6;至多需要小正方体木块的个数为:4+4=8个,即b=8,所以a-b=-2故答案为:-2【点睛】考查了几何体的三视图,解题关键是熟记口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”得到a、b的值5、4【分析】先判定这个几何体是圆锥,再根据圆锥的特点求出其表面积【详解】解:根据三视图可得这个几何体是圆锥,底面积×12,侧面积为3,则这个几何体的表面积+34;故答案为:4【点睛】此题主要考查圆锥的表面积,解题的关键是根据三视图的得到几何体是圆锥三、解答题1、(1)长方体或四棱柱(2)66cm2【分析】(1)这个立方体的三视图都是长方形所以这个几何体应该是长方体;(2)长方体一共有6个面,算长方体的表面积应该把这6个面的面积相加即可(1)这个立方体的三视图都是长方形,这个立方体是长方体或四棱柱(2)由三视图知该长方体的表面积:(3)(3×4)×4+(3×3)×2=66(cm2)【点睛】本题考查了由立体图形的三视图确定立体图形的形状;根据边长求表面积大小解题的关键是要有空间想象能力长方体有六个面,算表面积时不要遗漏2、(1)见详解;(2)6【分析】(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数【详解】解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图该几何体从正面,从左面看到的图形如图所示:(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图故答案为:6【点睛】本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”3、(1)见详解;(2)14cm2【分析】(1)根据从正面看得到的图形画在第一个网格中,根据从左面看得到的图形画在第二个网格中,根据从上面看得到的图形画在第三个网格中;(2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,利用加法运算求它们的和即可【详解】(1)从正面看得到的图形为主视图从左到右3列,左数第一列3个小正方形,第2列2个小正方形,第3列1个小正方形,下方对齐;从左面看得到的图形是左视图从左到右2列,左数第1列3个小正方形,第2列1个小正方形下方对齐;从上面看得到的图形是俯视图从左到右3列,第1列2个小正方形,第2列1个小正方形,第3列1个小正方形,上对齐; (2)从正面看几何体的表面积为6cm2,从左面看几何体的表面积为4cm2,从上面看几何体的表面积为4cm2,从正面、左面、上面看到的几何体的表面积之和6+4+4=14cm2【点睛】本题考查由正方体找出简单组合体的三视图,从不同方向看到的表面积,掌握简单组合体的三视图是解题关键4、(1)24;(2)见解析【分析】(1)根据三视图可求出几何体的表面积;(2)主视图有3列,每列小正方形数目分别为2,2,1,左视图有2列,每列小正方形数目分别为2,1,俯视图有3列,每列小正方数形数目分别为1,2,1据此可画出图形【详解】解:(1)该几何体的表面积是:4×25×23×224(cm2),故答案为: 24;(2)如图所示:【点睛】本题考查几何体的三视图画法以及几何体的表面积,关键是掌握三视图所看的位置,掌握几何体表面积的计算方法5、(1)11;(2)见解析【分析】(1)根据几何体的图形进行判断即可得到答案;(2)根据几何体的左视图有2列,每一列的小正方形数目为2,2;俯视图有4列,每一列的小正方形的数目为2,2,1,1【详解】(1)左边第一例,两层,前后两行,共4个正方体,左边第二列,两层,前后两行,共4个正方体,左边第三列两层,只有后行2个正方体,左边第四列,后行1个正方体,一共有4+4+2+1=11个,故答案为:11;(2)从左边看:分两行,每行各看到2个正方形, 从上面看:分为四列,前后两行,前行左边有2个正方形,后行4个正方形【点睛】本题考查简单组合体的三视图,和立方体的个数,解此题的关键在于平时加强空间想象的能力