基础强化京改版九年级数学下册第二十四章-投影、视图与展开图难点解析试题(含详细解析).docx
-
资源ID:32540394
资源大小:356.38KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
基础强化京改版九年级数学下册第二十四章-投影、视图与展开图难点解析试题(含详细解析).docx
九年级数学下册第二十四章 投影、视图与展开图难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列哪种光线形成的投影是平行投影()A太阳B探照灯C手电筒D路灯2、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC()A7.2B6.6C5.7D7.53、如图是一个立方体的展开图,那么在原立方体上,“南”字对面的字是()A学B子C加D油4、下图中是正方体展开图的是( )ABCD5、由6个大小相同的正方体搭成的几何体如图所示,则它的三种视图中,面积一样的是( )A主视图与俯视图B主视图与左视图C俯视图与左视图D主视图、左视图和俯视图6、如图所示的几何体,它的左视图是( )ABCD7、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是( ) A传B因 C承D基8、如图几何体的主视图是( )ABCD9、如图,该几何体的主视图是( )ABCD10、如图是一个正方体包装盒的表面展开图,若在其中的三个面A,B,C上分别填上适当的数,使得A,B,C的数字与其对面数字互为相反数,则A,B,C上数字分别为()A0,3,4B0,3,4C4,0,3D3,0,4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正方体的表面展开图如图所示,则原正方体中的“”所在面的对面所标的字是_2、正方体的表面展开图如图所示,“遇”的相对面上的字为_3、有一个正方体的六个面上分别标有数字、,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字的面所对面上的数字记为,的面所对面上数字记为,那么的值为_4、把一个正方体纸盒展成一个平面图形,至少需要剪开_条棱5、如图所示是一个几何体的三视图,这个几何体的名称是_三、解答题(5小题,每小题10分,共计50分)1、已知由几个大小相同的小立方块搭成的几何体,从上面观察,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面、左面看到的这个几何体的形状图(几何体中每个小立方块的棱长都是1cm)画图时要用刻度尺2、如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图3、一个几何体的三种视图如图所示,(1)这个几何体的名称是_,其侧面积为_;(2)在右面方格图中画出它的一种表面展开图;(3)求出左视图中AB的长4、如图,是由一些大小相同的小正方体组合成的简单几何体,根据要求完成下列题目(1)图中共有 个小正方体;(2)请在方格纸中分别画出它的左视图和俯视图(画出的图需涂上阴影)5、用若干个小立方块搭一几何体,使它从正面看和从上面看得到的图形如图所示从上面看得到的图形中小正方形里的字母表示在该位置小立方块的个数请问:(1)表示几?这个几何体由几个小立方块搭成?(2)画出该几何体从左面看得到的图形-参考答案-一、单选题1、A【分析】中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影,根据定义逐一分析即可得到答案.【详解】解:太阳光线形成的投影是平行投影,探照灯,手电筒,路灯形成的投影是中心投影,故选A【点睛】本题考查的是平行投影与中心投影的含义及应用,根据定义熟练判断中心投影与平行投影是解题的关键.2、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可【详解】解:AEOD,OGOD,AE/OG,AEB=OGB,EAB=GOB,AEBOGB,即 ,解得:AB2m;OA所在的直线行走到点C时,人影长度增长3米,DCAB+3=5m,OD=OA+AC+CD=AC+10,FCGO,CFD=OGD,FCD=GOD,DFCDGO,即,解得:AC7.5m所以小方行走的路程为7.5m故选择:D【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键3、B【分析】根据正方体的表面展开图,相对的面之间相隔一个正方形,即可求解【详解】解:根据题意得:“南”与“子”是相对面故选:B【点睛】本题主要考查了正方体的表面展开图,熟练掌握相对的面之间相隔一个正方形是解题的关键4、D【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答【详解】解:A、B、C中的图形折叠时有一个面重合,故不能折叠成正方体,D中的图形能折叠成正方体;故选D【点睛】本题考查了正方体的表面展开图,理正方体的表面展开图的模型是解题的关键正方体的表面展开图用口诀:一线不过四,田凹应弃之,相间、Z端是对面,间二、拐角邻面知5、B【分析】根据简单几何体的三视图解答即可【详解】解:该几何体的三视图如图所示:, ,由三视图可知,面积一样的是主视图与左视图,故选:B【点睛】本题考查简单几何体的三视图,熟知三视图的特点是解答的关键6、D【分析】左视图:从物体左面所看的平面图形,注意:看到的棱画实线,看不到的棱画虚线,据此进行判断即可【详解】解:如图所示,几何体的左视图是:故选:D【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键7、D【分析】正方体的表面展开图,相对的面之间一般情况相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一般情况相隔一个正方形,“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面故选:D【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题8、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解【详解】解:从正面看,主视图是两个长方形故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键9、B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示【详解】解:从正面看易得,该几何体的视图为B,故选:B【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键10、A【分析】依据立方体展开图的性质确定出对面,然后依据相反数的定义计算,即可得到答案【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“4”是相对面,相对面上的两数互为相反数,A、B、C内的三个数依次是0、3、4故选:A【点睛】本题考查了立方体展开图、相反数的知识;解题的关键是熟练掌握立方体展开图、相反数的性质,从而完成求解二、填空题1、有【分析】根据正方体展开图的性质即可求解【详解】解:由正方体的展开图可知,“”与“有”相对,“几”与“真”相对,“何”与“趣”相对故答案为:有【点睛】本题考查了正方体的展开,属于简单题,空间想象能力是解题关键2、中【分析】根据正方体表面展开图的特征进行判断即可【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“遇”与“中”是对面,“见”与“纷”是对面,“缤”与“附”是对面,故答案为:中【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提3、【分析】根据正方体的对面和邻面得出每一个面的对面后,确定a、b的值代入计算即可【详解】由三个正方体上所标的数字可得,“1”的邻面有“6,4,2,3”,因此“1”对“5”,“3”的邻面有“1,2,4,5”,因此“3”对“6”,于是“2”对“4”,标有数字6的面所对面上的数字记为a,2的面所对面上数字记为b,a=3,b=4,2a+3b=6+12=18故答案为:18【点睛】本题考查正方体表面展开图,正确判断“对面“和“邻面“是解决问题的关键4、7【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案【详解】解:正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,要剪12-5=7条棱,故答案为:7【点睛】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键5、圆柱体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱体故答案为:圆柱体【点睛】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了空间想象能力三、解答题1、见解析【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,4,左视图有2列,每列小正方形数目分别为3,4据此可画出图形【详解】解:如图所示,即为所求:从正面看 从左面看【点睛】本题考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字,理解这个画法是解题关键2、见解析【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形3、(1)正三棱柱,72;(2)画图见解析;(3)【分析】(1)由三视图所表现特征可知几何体为正三棱柱,正三棱柱侧面积为三个矩形,则侧面积为(2)如图所示,答案不唯一(3)中过E点作FG垂线,垂足为H,可求得FH=2,再由勾股定理即可求得FH=【详解】(1)该几何体由主视图和左视图可判断为棱柱,由俯视图可判断为正三棱柱(2)如图所示(3)如图所示,中过E点作FG垂线,垂足为H为等边三角形FH=2,EHF=EHG=90°【点睛】本题考查了三视图以及勾股定理,三视图是从正面、左面、上面以平行视线观察物体所得的图形,判断三视图时应结合实物,变换角度去观察,结合空间想象能力,由三视图求几何体的侧面积或表面积时,首先要根据三视图描述几何体,再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个面的尺寸,然后求表面积或侧面积4、(1)9;(2)见解析【分析】(1)直接根据几何体的形状,数出小正方体的个数即可;(2)直接利用左视图以及俯视图的观察角度分析得出答案即可【详解】解:(1)由题意得:图中共有9个小正方体故答案为:9(2)如图所示,即为所求:【点睛】本题主要考查了画小立方体组成的几何体的三视图,判断小立方体的个数,解题的关键在于正确注意观察角度,主视图、俯视图、左视图分别是从物体的正面,上面、左面看得到的图形5、(1)x=1,由7个小立方块搭成(2)见解析【分析】(1)根据主视图和俯视图之间的关系,可得到x的值,故可求出几何体的小立方块的个数;(2)根据左视图的特点即可作图 【详解】解:(1)由主视图和俯视图之间的关系,可得x=1小立方块的个数为6+1=7个;(2)从左面看得到的图形如下:【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”