精品试卷京改版九年级数学下册第二十三章-图形的变换专项测试试题(含详解).docx
-
资源ID:32544484
资源大小:1.47MB
全文页数:33页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试卷京改版九年级数学下册第二十三章-图形的变换专项测试试题(含详解).docx
九年级数学下册第二十三章 图形的变换专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将OAB绕点O逆时针旋转80°得到OCD,若A的度数为110°,D的度数为40°,则AOD的度数是( )A50°B60°C40°D30°2、点向上平移2个单位后与点关于y轴对称,则( )A1BCD3、下列四个标志中,是轴对称图形的是( )ABCD4、下列图形中,既是轴对称图形又是中心对称图形的是( ) A等边三角形B平行四边形C正五边形D正六边形5、下面是四家医院标志的图案部分,其中是轴对称图形的是()ABCD6、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD17、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的对应点在直线上,则点与其对应点之间的距离为( )A4B6C8D108、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB ,OD4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )A(,)B(,)C(,)D(,)9、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) A40°B50°C70°D10010、在平面直角坐标系中,点的坐标是,点与点关于轴对称,则点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在中,D,E分别是,的中点,若等腰绕点A逆时针旋转,得到等腰,记直线与的交点为P,则点P到所在直线的距离的最大值为_2、若点M(,a)关于y轴的对称点是点N(b,),则=_3、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是_4、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_5、如图,在矩形ABCD中,AD3,点E在AB边上,AE4,BE2,点F是AC上的一个动点连接EF,将线段EF绕点E逆时针旋转90°并延长至其2倍,得到线段EG,当时,点G到CD的距离是 _三、解答题(5小题,每小题10分,共计50分)1、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值2、如图,在10×10的网格中建立如图的平面直角坐标系,线段AB两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB关于y轴对称的线段CD,则点A的对应点C的坐标是 ;(2)将线段AB先向左平移4个单位,再向下平移5个单位,画出平移后的对应线段EF,观察线段EF与DC是否关于某直线对称?若是,则对称轴是 ;E点坐标是 ;(3)ABP是以AB为直角边的格点等腰直角三角形(A,B,P三点都是小正方形的顶点),则点P的坐标是 3、抛物线yax2bx2(a0)与x轴交于点A(1,0),B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x轴相交于点H,连接AC,BCABC绕点B顺时针旋转一定角度后落在第一象限,当点C的对应点C1落在抛物线的对称轴上时,求此时点A的对应点A1的坐标;(3)如图2,过点C作轴交抛物线于点E,已知点D在抛物线上且横坐标为,在y轴左侧的抛物线上有一点P,满足PDCEDC,求点P的坐标4、在如图所示的平面直角系中,已知,(方格中每个小正方形的边长均为1个单位)(1)画出;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形,并写出点的坐标 5、如图,ABC是等边三角形,点D在AC边上,将BCD绕点C旋转得到ACE(1)求证:DEBC;(2)若AB8,BD7,求ADE的周长-参考答案-一、单选题1、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80°得到OCD, A的度数为110°,D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.2、D【分析】利用平移及关于y轴对称点的性质即可求解【详解】解:把向上平移2个单位后得到点 ,点与点关于y轴对称, , , ,故选:D【点睛】本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂3、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形4、D【分析】根据轴对称图形,中心对称图形的定义去判断即可【详解】等边三角形是轴对称图形,不是中心对称图形,A不符合题意;平行四边形不是轴对称图形,是中心对称图形,B不符合题意;正五边形是轴对称图形,不是中心对称图形,C不符合题意;正六边形是轴对称图形,也是中心对称图形,D符合题意;故选D【点睛】本题考查了轴对称图形,中心对称图形的定义,轴对称图形即将一个图形沿着某条直线折叠,直线两旁的部分完全重合,中心对称图形即将一个图形绕某点旋转180°后与原图形完全重合,熟练掌握两种图形的定义是解题的关键5、A【分析】根据轴对称图形的概念逐项判断解答即可【详解】是轴对称图形,选项正确;不是轴对称图形,选项错误;不是轴对称图形,选项错误;不是轴对称图形,选项错误;故选:【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后能重合6、B【分析】由直角三角形的性质可得AB2,BC2AB4,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解【详解】解:,BAC90°C=90°-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度得到RtADE,ADAB,且B60°ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键7、D【分析】先根据平移的特点可知所求的距离为,且,点纵坐标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的纵坐标为6,令,代入直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的性质是解题关键8、B【分析】由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D点坐标为(4,0),则C点坐标为(1,)【详解】四边形ABCD为矩形AB=CD=,DOC=60°在中有则C点坐标为(2,0),D点坐标为(2,)又旋转后D点落在x轴的正半轴上可看作矩形ABCD中绕点O顺时针旋转了60°得到如图所示,过C作y轴平行线交x轴于点M其中DOC=DOC=60°,OMC=90°,OC=OC=2OM=1,MC=C坐标为(1,)故选:B【点睛】本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60°是解题的关键9、C【分析】根据旋转的性质,可得 , ,从而得到,即可求解【详解】解:绕点A按逆时针方向旋转40°后与重合, , , 故选:C【点睛】本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键10、C【分析】根据关于轴对称的点坐标的特征:纵坐标不变,横坐标互为相反数,即可求解【详解】解:点的坐标是,点与点关于轴对称,的坐标为,故选:C【点睛】本题主要是考查了关于轴对称的点坐标的特征,熟练掌握关于坐标轴对称的点的特征,是解决该类问题的关键二、填空题1、#【分析】首先作PGAB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长【详解】解:如图,作PGAB,交AB所在直线于点G,D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,CAB=90°,AC=AB=4,D,E分别是AB,AC的中点,AD=AE1=AD1=PD1=2,则BD1=,故ABP=30°,则PB=2+2,PG=PB=,故点P到AB所在直线的距离的最大值为:PG=故答案为:【点睛】本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键2、1【分析】直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案【详解】解:点M(,a)关于y轴的对称点是点N(b,),b=-,a=,则=1故答案为:1【点睛】此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键3、 (5,1)【分析】利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可【详解】解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,所以平移后的点坐标为(5,1)故答案为:(5,1)【点睛】本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键4、【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键5、或【分析】分两种情况如图1和图2所示,利用相似三角形的性质与判定分类讨论求解即可【详解】解:如图1所示,过点G作NHAD分别交BA,CD延长线于 H,N,过点F作FMBC,交AB于M,四边形ABCD是矩形,B=BAD=HAD=ADC=AND=90°,H=N=AMF=90°,四边形HADH是矩形,即,HN=AD,由旋转的性质可知GEF=90°,HEG+NEF=90°,又MEF+MFE=90°,HEG=MFE,HEGMFE,MFBC,AMFABC,即点G到CD的距离为;如图2所示,过点G作NHAD分别交直线BA,直线CD于 H,N,过点F作FMBC,交AB于M,同理可求出,同理可证AMFABC,即点G到CD的距离为;综上所述,点G到CD的距离为或【点睛】本题主要考查了相似三角形的性质与判定,矩形的性质,三角函数,点到直线的距离,旋转的性质,解题的关键在于能够正确作出辅助线构造相似三角形求解三、解答题1、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120°,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120°,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120°,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键2、(1)画图见解析,;(2)轴,;(3)【分析】(1)先确定关于轴对称的对应点 再连接即可;(2)先确定平移后的对应点 再连接 由图形位置可得关于轴对称,再写出的坐标即可;(3)先求解 作再证明 是等腰直角三角形,同理:作证明,所以是等腰直角三角形,从而可得答案.【详解】解:(1)如图,线段即为所求作的线段, (2)如图,线段为平移后的线段,线段与线段关于轴对称,所以对称轴是轴,则 (3)如图,即为所求作的三角形,由勾股定理可得: 是等腰直角三角形,同理: 所以是等腰直角三角形.此时:【点睛】本题考查的是轴对称的性质,平移的性质,轴对称的作图,平移的作图,勾股定理与勾股定理的逆定理的应用,等腰直角三角形的判定,数形结合的运用是解本题的关键.3、(1);(2)(3,4);(3)(,)【分析】(1)把A(1,0),B(3,0)代入抛物线解析式利用待定系数法求解二次函数的解析式即可;(2)如图,先求解C(0,2),对称轴为直线,可得BHCO2结合旋转得BC1BC ,证明RTBC1HRTCBO(HL),再证明旋转角A1BAC1BC90°,从而可得答案;(3)先求解D(,),E(2,2),如图,过点D作DGCE交CE的延长线于点G,证明CGDG,可得ECDGDC45° ,如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P,证明QCDECD,可得QCEC2,可得Q(0,0),再求解直线DQ的解析式为,联立 ,再解方程组可得答案.【详解】解:(1)将A(1,0),B(3,0)代入抛物线解析式得 解得 抛物线的解析式为(2)抛物线的解析式为,A(1,0),B(3,0)C(0,2),对称轴为直线 BHCO2由旋转得BC1BC 则RTBC1HRTCBO(HL) C1BHBCOC1BCC1BHOBCBCOOBC90°旋转角A1BAC1BC90°,即A1Bx轴 A1BBA4,B(3,0)A1(3,4)(3)抛物线的解析式为,D的横坐标为当x时,y,则D(,)轴,C(0,2),对称轴为直线x1E(2,2) 如图,过点D作DGCE交CE的延长线于点G, CGDG,ECDGDC45° 如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P轴 ,QCE90°QCDECD45°CDCD,QCDECD(ASA)QCEC2,C(0,2),Q(0,0)D(,),设直线 解得: 直线DQ的解析式为则 ,消去得: 解得: 当时, 当时, 所以方程组的解为:或,【点睛】本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.4、(1)见解析;(2)(6,6)【分析】(1)在坐标系中先描点,然后依次连接即可得;(2)根据题意中位似中心及相似比先确定点的坐标,然后依次连接即可得【详解】解:(1)在坐标系中先描点,然后依次连接,如图所示:即为所求;(2),根据位似中心及相似比可得:,然后依次连接即可得,即为所求;故答案为:【点睛】题目主要考查位似图形作法及确定点的坐标,熟练掌握位似图形的作法是解题关键5、(1)见解析;(2)15【分析】(1)根据旋转的性质可得,进而证明是等边三角形,进而可得,即可证明;(2)根据旋转的性质可得,又是等边三角形,则,即可求得ADE的周长等于【详解】(1)解:ABC是等边三角形,将BCD绕点C旋转得到ACE,是等边三角形;(2)将BCD绕点C旋转得到ACE,是等边三角形, AB8,BD7,ADE的周长等于【点睛】本题考查了旋转的性质,三角形全等的性质,等边三角形的性质,平行线的判定,掌握旋转的性质是解题的关键