2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用专题练习练习题(无超纲).docx
-
资源ID:32545201
资源大小:468.36KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年强化训练京改版九年级数学下册第二十五章-概率的求法与应用专题练习练习题(无超纲).docx
九年级数学下册第二十五章 概率的求法与应用专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( )ABCD2、不透明的袋子里装有7个只有颜色不同的球,其中3个黑球,4个白球,搅匀后任意摸出一个球,是白球的概率是( )ABCD3、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )ABCD4、在“石头、剪子、布”的游戏中,当你出“剪刀”时,对手与你打平的概率为()ABCD5、某市教委高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是( )ABCD6、在一个不透明的纸箱中,共有个蓝色、红色的玻璃球,它们除颜色外其他完全相同小柯每次摸出一个球后放回,通过多次摸球试验后发现摸到蓝色球的频率稳定在,则纸箱中红色球很可能有( )A个B个C个D个7、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()ABCD8、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进)则小张从不同的出入口进出的概率是()ABCD9、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )ABCD10、下列说法中,正确的是( )A“射击运动员射击一次,命中靶心”是必然事件B事件发生的可能性越大,它的概率越接近1C某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为,自由转动转盘,指针落在白色区域的概率是_2、如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是_3、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是_4、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是_5、粉笔盒中有10支白色粉笔盒若干支彩色粉笔,每支粉笔除颜色外均相同,从中随机拿一支粉笔,拿到白色的概率为,则其中彩色粉笔的数量为_支三、解答题(5小题,每小题10分,共计50分)1、小丽进行摸球实验,她在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球这些小球除颜色外其它都相同实验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次若小丽随机摸球两次,请你用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率2、在一次数学兴趣小组活动中,小李和小王两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字)游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)(1)请用列表或画树状图的方法分别求出小李和小王获胜的概率;(2)这个游戏公平吗?若不公平,请你设计一个公平的游戏规则3、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率4、某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为 ;(2)估计这批柑橘完好的质量为 千克;(3)如果公司希望销售这些柑橘能够获得不低于25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?5、从一副52张(没有大小王)的扑克牌中,每次抽出1张,然后放回洗匀再抽,在试验中得到下列表中部分数据:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(1)将数据表a、b补充完整;(2)从上表中可以估计出现方块的概率是_;(3)从这副扑克牌中取出两组牌,分别是方块1,2,3和红桃1,2,3,将它们背面朝上分别重新洗匀后,从两组牌中各摸出一张,若摸出的两张牌的牌面数字之和等于3,则甲方赢;若摸出的两张牌的牌面数字之和等于4,则乙方赢你认为这个游戏对双方是公平的吗若不是,有利于谁请你用概率知识(列表或画树状图)加以分析说明-参考答案-一、单选题1、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键2、C【分析】直接根据概率公式求解即可【详解】解:装有7个只有颜色不同的球,其中4个白球,从布袋中随机摸出一个球,摸出的球是白球的概率故选:C【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键3、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:故选C【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.4、B【分析】根据题意画树状图展示所有3种等可能的结果数,再找出对手与你打平的结果数,然后根据概率公式求解即可【详解】解:画树状图为:共有3种可能的结果数,其中对手与你打平的结果数为1,所以对手与你打平的概率=.故选:B【点睛】本题考查列表法与树状图法求概率,注意掌握利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率5、A【分析】利用列表法列举所有的可能性,再由当心低温的图片为轴对称图形得到两张卡片的正面图案中有一张是轴对称图形的有6种,根据公式计算即可求出概率【详解】解:由题意知,当心低温的图片为轴对称图形,列表为:当心水灾1当心山体滑坡2当心低温3当心雷击4当心水灾11,21,31,4当心山体滑坡22,12,32,4当心低温33,13,23,4当心雷击44,14,24,3共有12种等可能的情况,其中两张卡片的正面图案中有一张是轴对称图形的有6种,两张卡片的正面图案中有一张是轴对称图形的概率是=,故选:A【点睛】此题考查了列举法求事件的概率,正确判断轴对称图形,正确列举出所有不同情况是解题的关键6、D【分析】根据利用频率估计概率得到摸到蓝色球的概率为20%,由此得到摸到红色球的概率=1-20%=80%,然后用80%乘以总球数即可得到红色球的个数【详解】解:摸到蓝色球的频率稳定在20%,摸到红色球的概率=1-20%=80%,不透明的布袋中,有黄色、白色的玻璃球共有15个,纸箱中红球的个数有15×80%=12(个)故选:D【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率7、B【分析】用黑色的小球个数除以球的总个数即可解题【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率8、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,P小张从不同的出入口进出的结果数,故选D【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率9、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:列树状图如下所示: 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,恰好有两次正面朝上的事件概率是:故选C【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图10、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确故选择B【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键二、填空题1、【分析】先确定白色部分的面积是整个圆的面积的,结合几何概率的含义可得答案.【详解】解:由题意得:白色部分的圆心角为: 所以: 所以自由转动转盘,指针落在白色区域的概率是,故答案为:【点睛】本题考查的是简单随机事件的概率,几何概率的计算,掌握“几何概率的计算与图形面积的关系”是解本题的关键.2、【分析】由题意根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:如图假设围棋盘上两个格子的格点分别为,白球在网格上有6种摆放方法,两棋子不在同一条格线上的摆放记为(白,黑)共有12种摆放方法,其中,恰好摆放成如图所示位置的情况只有1种,故概率为:.故答案为:【点睛】本题考查概率的求法.注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=3、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案【详解】根据题意,3的倍数有:3,6,9,共3个数摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解4、【分析】根据简单概率公式进行计算即可【详解】解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色则指针对准红色区域的可能性大小是故答案为:【点睛】本题考查了几何概率,立即题意是解题的关键5、15【分析】设彩色笔的数量为x支,然后根据概率公式列出方程求解即可【详解】解:设彩色笔的数量为x支,由题意得:,解得,经检验是原方程的解,彩色笔为15支,故答案为:15【点睛】本题主要考查了概率公式和分式方程,解题的关键在于能够熟练掌握概率公式列出方程进行求解三、解答题1、树状图见解析,P两次摸出的球中一个是白球、一个是黄球【分析】先画出树状图得到所有的等可能性的结果数,然后找到两次摸出的球中一个是白球、一个是黄球的结果数,最后根据概率公式求解即可【详解】解:画树状图如下所示:由树状图可知,一共有16种等可能性的结果数,其中两次摸出的球中一个是白球、一个是黄球的结果数有2种,P两次摸出的球中一个是白球、一个是黄球【点睛】本题主要考查了用树状图或列表法求解概率,解题的关键在于能够熟练掌握画树状图或列表法求解概率2、(1)小李获胜的概率是,小王获胜的概率是;(2)不公平,见详解.【分析】(1)根据题意画出树状图,得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案;(2)由题意根据各自得出的概率得出游戏不公平,再根据概率公式直接修改为两人获胜的概率相等即可【详解】解:(1)根据题意画图如下:由上图可知,共有12种等可能的情况数,其中指针所指区规内两数和小于11有3种,两数和大于11有6种,则小李获胜的概率是,小王获胜的概率是;(2)由(1)知,小李获胜的概率是,小王获胜的概率是,所以游戏不公平;游戏规则:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和不大于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)【点睛】本题考查的是游戏公平性的判断注意掌握判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比3、【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即4、(1)0.1;(2)9000;(3)每千克柑橘大约定价为5元比较合适【分析】(1)根据图形即可得出柑橘损坏的概率; (2)用整体1减去柑橘损坏的概率即可出柑橘完好的概率,再乘以10000千克即可解题;(3)先设每千克柑橘大约定价为x元比较合适,根据题意列出方程,解方程即可解答【详解】解:(1)由图可知,柑橘损坏概率估计值为0.1故答案为:0.1;(2)1-0.1=0.9,10000×0.9=9000(千克)故答案:9000;(3)设每千克柑橘大约定价为x元比较合适,由题意得,9000x=25000+2×10000解得:x=5答:每千克柑橘大约定价为5元比较合适【点睛】本题考查频率估计概率,解题关键是在图中找到必要信息,求出柑橘损坏的概率5、(1)30,0.250;(2);(3)这个游戏对双方是不公平的,有利于乙方,说明见解析【详解】(1)根据频数总数×频率,频率频数÷总数计算,补全即可;(2)概率是题目中比较稳定在的那个数,观察(1)中表格可得到答案;(3)游戏是否公平,关键要看是否游戏双方赢的概率相同,本题中即甲方赢或乙方赢的概率是否相等,求出概率比较,即可得出结论【分析】解:(1)由题意得:,填表如下所示:试验次数4080120160200240280320360400出现方块的次数1118a404963688091100出现方块的频率0.2750.2250.2500.2500.2450.2630.243b0.2530.250(2)从表中得出,出现方块的频率稳定在0.250附近,故可以估计出现方块的概率为;(3)列表如下:红桃123方块123423453456由表可知所有等可能的结果有9种,其中甲方赢的结果有2种,乙方赢的结果有3种,甲方赢,乙方赢,乙方赢甲方赢,这个游戏对双方是不公平的,有利于乙方【点睛】本题主要考查了求频率,根据频率估计概率,游戏公平性,解题的关键在于能够熟练掌握相关知识进行求解