2022年最新浙教版初中数学七年级下册第四章因式分解月度测评试题.docx
-
资源ID:32546412
资源大小:183.77KB
全文页数:19页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年最新浙教版初中数学七年级下册第四章因式分解月度测评试题.docx
初中数学七年级下册第四章因式分解月度测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解2、下列因式分解结果正确的是( )A.B.C.D.3、把多项式x39x分解因式,正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)4、已知,那么的值为( )A.3B.6C.D.5、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)6、已知,则的值是( )A.6B.6C.1D.17、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.128、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)9、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.10、下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x-6y)D.x2y-y3=y(x+y)(x-y)11、下列各式中不能用公式法因式分解的是( )A.x24B.x24C.x2xD.x24x412、下列各式中,因式分解正确的是( )A.B.C.D.13、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)214、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9D.715、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.5二、填空题(10小题,每小题4分,共计40分)1、因式分解:=_2、分解因式:x2y6xy9y_3、由多项式乘法:(x+a)(x+b)x2+(a+b)x+ab,将该式子从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab(x+a)(x+b),请用上述方法将多项式x25x+6因式分解的结果是 _4、若ab=2,a-b=3,则代数式ab2-a2b=_5、分解因式:_6、若关于的二次三项式可以用完全平方公式进行因式分解,则_7、因式分解:_8、分解因式:3x2y12xy2_9、已知a2b5,则代数式a24ab4b25的值是_10、因式分解:_三、解答题(3小题,每小题5分,共计15分)1、阅读理解题由多项式乘法:,将该式从右到左使用,即可进行因式分解的公式:示例:分解因式:分解因式:多项式的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和(1)尝试:分解因式:(_)(_);(2)应用:请用上述方法将多项式:、进行因式分解2、因式分解:(1)2(x+2)2+8(x+2)+8;(2)2m4+32m²3、因式分解:6m3n+4mn22mn-参考答案-一、单选题1、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.2、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式x(x4),故本选项不符合题意;B、原式(2x+y)(2xy),故本选项不符合题意;C、原式(x+1)2,故本选项符合题意;D、原式(x+1)(x6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.3、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.4、D【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.5、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6、B【分析】首先将 变形为,再代入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.7、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.8、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(x+2)2,是因式分解,故C符合题意;D. ax2aa(x21)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.9、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.10、D【分析】根据提公因式法、公式法逐项进行因式分解,再进行判断即可.【详解】解:A.x2-4=(x+2)(x-2),因此选项A不符合题意;B.x2+2x+1=(x+1)2,因此选项B不符合题意;C.3mx-6my=3m(x-2y),因此选项C不符合题意;D.x2y-y3=y(x2-y2)=y(x+y)(x-y),因此选项D符合题意;故选:D.【点睛】本题考查提公因式法、公式法分解因式,掌握a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2是正确应用的前提.11、B【分析】根据完全平方公式:a2±2abb2(a±b)2以及平方差公式分别判断得出答案.【详解】解:A、x24(x2)(x2),不合题意;B、x24,不能用公式法分解因式,符合题意;C、x2x(x)2,运用完全平方公式分解因式,不合题意;D、x24x4(x2)2,运用完全平方公式分解因式,不合题意;故选:B.【点睛】本题考查了公式法分解因式,解题的关键是熟练运用完全平方公式、平方差公式.12、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,无法分解因式,故此选项不合题意;,故此选项符合题意;.,故此选项不合题意;故选:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.13、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.14、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.15、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.二、填空题1、【分析】根据完全平方公式分解即可.【详解】解: =,故答案为:.【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方公式进行因式分解.2、【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.3、【分析】根据“十字相乘法”的方法进行因式分解即可.【详解】故答案为:.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是解题的关键.4、6【分析】用提公因式法将ab2-a2b分解为含有ab,a-b的形式,代入即可.【详解】解:ab=2,a-b=3,ab2-a2b=-ab(a-b)=2×3=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab2-a2b分解为含有ab,a-b的形式,用整体代入即可.5、#【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.6、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公式进行因式分解,-2(m-1)=±8,解得:m=-3或5.故答案为:-3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.7、【分析】先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟知完全平方公式的结构特点是解题关键.8、【分析】根据提公因式法因式分解即可.【详解】3x2y12xy2故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.9、20【分析】将a=2b-5变为a-2b=-5,再根据完全平方公式分解a2-4ab+4b2-5=(a-2b)2-5,代入求解.【详解】解:a=2b-5,a-2b=-5,a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.10、【分析】直接提取公因式整理即可.【详解】解:,故答案是:.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.三、解答题1、(1)2,4;(2)(x-2)(x-3),(x+1)(x-6)【分析】(1)根据“常数项为两数之积,一次项系数为这两数之和”可得;(2)利用“x2+(a+b)x+ab=(x+a)(x+b)”进行因式分解即可.【详解】解:(1)x2+6x+8=x2+(2+4)x+2×4=(x+2)(x+4),故答案为:2,4;(2)x2-5x+6=x2+(-2)+(-3)x+(-2)×(-3)=(x-2)(x-3),x2-5x-6=x2+1+(-6)x+1×(-6)=(x+1)(x-6).【点睛】本题考查因式分解,解题的关键是理解“常数项为两数之积,一次项系数为这两数之和”.2、(1)2(x+4)2;(2)2m2(m+4)(m4)【分析】(1)直接提取公因式2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式2m2,再利用平方差公式分解因式得出答案.【详解】解:(1)2(x+2)2+8(x+2)+82(x+2)2+4(x+2)+42(x+2+2)22(x+4)2;(2)2m4+32m22m2(m216)2m2(m+4)(m4).【点睛】本题考查了提公因式法及公式法分解因式,解题的关键是正确运用公式.3、-2mn(3m2-2n+1).【分析】原式提取-2mn,即可分解.【详解】解:-6m3n+4mn2-2mn=-2mn(3m2-2n+1).【点睛】本题考查了提公因式分解因式,熟练掌握因式分解的方法是解本题的关键.