2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试卷(精选含详解).docx
-
资源ID:32547053
资源大小:1.18MB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新沪科版九年级数学下册第24章圆定向攻克试卷(精选含详解).docx
沪科版九年级数学下册第24章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD2、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD3、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD4、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )ABCD5、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD6、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)7、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A它们的开口方向相同B它们的对称轴相同C它们的变化情況相同D它们的顶点坐标相同8、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )A2个B3个C4个D5个9、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D10、如图,AB,CD是O的弦,且,若,则的度数为( )A30°B40°C45°D60°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在O中,A,B,C是O上三点,如果AOB=70º,那么C的度数为_2、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为_3、如图,在O中,AB10,BC12,D是上一点,CD5,则AD的长为_4、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为若,则的大小为_(度)5、如图AB为O的直径,点P为AB延长线上的点,过点P作O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是_(写所有正确论的号)AM平分CAB;若AB=4,APE=30°,则的长为;若AC=3BD,则有tanMAP=三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是正方形ABE是等边三角形,M为对角线 BD(不含B,D点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 EN,AM、CM请判断线段 AM 和线段 EN 的数量关系,并说明理由2、如图,已知AB是O的直径,O过BC的中点D,且(1)求证:DE是O的切线;(2)若,求的半径3、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为_度;(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部试探究与之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值4、如图,已知在中,D、E是BC边上的点,将绕点A旋转,得到,连接(1)当时,时,求证:;(2)当时,与有怎样的数量关系?请写出,并说明理由(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)5、如图,和中,连接,点M,N,P分别是的中点(1)请你判断的形状,并证明你的结论(2)将绕点A旋转,若,请直接写出周长的最大值与最小值-参考答案-一、单选题1、A【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30°,利用在RtABC中,AC=ABtanB=3×,在RtAOC中,ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90°-B=60°,OCD=OCA=30°,在RtABC中,AC=ABtanB=3×,在RtAOC中,ACO=30°,AO=ACtan30°=,OD=OA=1,DC=AC=,DOC=360°-OAC-ACD-ODC=360°-90°-90°-60°=120°,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键2、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合3、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.4、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键6、C【分析】由题意根据函数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90°,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键7、B【分析】根据旋转的性质及抛物线的性质即可确定答案【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,2),所以在四个选项中,只有B选项符合题意故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键8、A【分析】根据轴对称图形与中心对称图形的概念进行判断【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形故选:A【点睛】此题主要考查了中心对称图形与轴对称图形的概念(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心9、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出10、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得【详解】解:,故选:B【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键二、填空题1、35°【分析】利用圆周角定理求出所求角度数即可【详解】解:与都对,且,故答案为:【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理2、#【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点点C的坐标为(2,2),圆C与x轴相切于点A,点A的坐标为(2,0),OA=OD=2,即O是AD的中点,又M是AB的中点, OM是ABD的中位线,当BD最小时,OM也最小,当B运动到时,BD有最小值,C(2,2),D(-2,0),故答案为:【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键3、3【分析】过A作AEBC于E,过C作CFAD于F,根据圆周角定理可得ACB=B=D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明ABECDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF, AF即可求解【详解】解:过A作AEBC于E,过C作CFAD于F,则AEB=CFD=90°, AB10,ACB=B=D,AB=AC=10,AEBC,BC=12,BE=CE=6, ,B=D,AEB=CFD=90°,ABECDF,AB=10,CD=5,BE=6,AE=8,解得:DF=3,CF=4,在RtAFC中,AFC=90°,AC=10,CF=4,则,AD=DF+AF=32,故答案为:32【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键4、20【分析】先利用旋转的性质得到ADC=D=90°,DAD=,再利用四边形内角和计算出BAD=70°,然后利用互余计算出DAD,从而得到的值【详解】矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,ADC=D=90°,DAD=,ABC=90°,BAD=180°-1=180°-110°=70°,DAD=90°-70°=20°,即=20°故答案为20【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等5、【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断;通过证明,根据相似三角形的对应边成比例可判断;求出,利用弧长公式求得的长可判断;由,可得,继而可得,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断【详解】解:连接OM,PE为的切线,即AM平分,故正确;AB为的直径,故正确;,的长为,故错误;,又,又,设,则,在中,由可得,故正确,故答案为:【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键三、解答题1、AM=EN,理由见解析【分析】根据旋转性质和等边三角形的性质可证得ABM=EBN,BM=BN,AB=BE,根据全等三角形的判定证明ABMEBN即可得出结论【详解】解:AM=EN,理由为:ABE是等边三角形,AB=BE,ABE=60°,即EBN=ABN=60°,线段BM绕点B逆时针旋转60°得到BN,BM=BN,MBN=60°,即ABM+ABN=60°,ABM=EBN,在ABM和EBN中,ABMEBN(SAS),AM=EN【点睛】本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键2、(1)证明见解析;(2)【分析】(1)连接,只要证明即可此题可运用三角形的中位线定理证,因为,所以(2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和、的长,即可根据中位线性质求出的长,即的半径长【详解】(1)证明:连接因为是的中点,是的中点,是圆的半径,是的切线(2)如图,且,且, ,的半径长为【点睛】本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题3、(1)135°(2)MOP-NOQ=30°,理由见解析(3)s或s【分析】(1)先根据OP平分得到PON,然后求出BOP即可;(2)先根据题意可得MOP=90°-POQ, NOQ=60°-POQ,然后作差即可;(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可(1)解:OP平分MONPON=MON=45°三角板OPQ旋转的角:BOP=PON+NOB=135°故答案是135°(2)解:MOP-NOQ=30°,理由如下:MON=90°,POQ=60°MOP=90°-POQ, NOQ=60°-POQ,MOP-NOQ=90°-POQ -(60°-POQ)=30°(3)解:射线OC平分,射线OD平分NOC=45°,POD=30°选择前OC与OD的夹角为COD=NOC+NOP+POD=165°OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°此时OC与OE的夹角165-(180-45-2×33)=96°OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒设在OC与OD第二次相遇前,当时,需要旋转时间为t当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s然后,都是每隔360÷(5°-2°)=120秒,出现一次这种现象C、D第二次相遇需要时间72秒在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s【点睛】本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键4、(1)见解析;(2)DAEBAC,见解析;(3)DEBD,见解析【分析】(1)根据旋转的性质可得ADAD,CADBAD,然后求出DAE60°,从而得到DAEDAE,再利用“边角边”证明ADE和ADE全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得ADAD,再利用“边边边”证明ADE和ADE全等,然后根据全等三角形对应角相等求出DAEDAE,然后求出BADCAEDAE,从而得解;(3)求出DCE90°,然后根据等腰直角三角形斜边等于直角边的倍可得DECD,再根据旋转的性质解答即可【详解】(1)证明:ABD绕点A旋转得到ACD,ADAD,CADBAD,BAC120°,DAE60°,DAECADCAEBADCAEBACDAE120°60°60°,DAEDAE,在ADE和ADE中, ,ADEADE(SAS),DEDE;(2)解:DAE BAC理由如下:在ADE和ADE中, ,ADEADE(SSS),DAEDAE,BADCAECADCAEDAEDAE,DAEBAC;(3)解:BAC90°,ABAC,BACBACD45°,DCE45°45°90°,DEC是等腰直角三角形,DECD,由(2)DEDE,ABD绕点A旋转得到ACD,BDCD,DEBD【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键5、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题(1)连接BD,CE,如图, BD=CE,点M,N,P分别是的中点/,PN/BD,PN=BDPM=PN, PN/BDPNC=DBCMPN=MPD+DPN=ECA+ACD+PCN+PNC=ACB+DBC+ABD=ACB+ABC=90° 是等腰直角三角形;(2)由(1)知,是等腰直角三角形 的周长为 的周长为 当BD最小时即点D在AB上,此时周长最小,AB=8,AD=3BD的最小值为AB-AD=8-3=5周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,BD=AB+AD=8+3=11周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键