欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年精品解析北师大版九年级数学下册第二章二次函数重点解析试卷(含答案详细解析).docx

    • 资源ID:32547098       资源大小:649.30KB        全文页数:26页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年精品解析北师大版九年级数学下册第二章二次函数重点解析试卷(含答案详细解析).docx

    北师大版九年级数学下册第二章二次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系xOy中,抛物线向上平移2个单位长度得到的抛物线为( )ABCD2、若点A(1,y1),B(2,y2),C(m,y3)在抛物线y=(a0)上,且y1y2y3,则m的值不可能是()A5B3C3D53、如图1所示,DEF中,DEF90°,D30°,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D484、如图,抛物线与x轴交于点,对称轴为直线结合图象分析下列结论:;一元二次方程的两根分别为,;若为方程的两个根,则且其中正确的结论有( )个A2B3C4D55、下列函数中,是二次函数的是( )ABCD6、下列关于二次函数的说法正确的是( )A当时,随着的增大而增大B当时,有最小值为2C该函数图象与轴有两个交点D该函数图象可由抛物线向左平移6个单位,再向上平移2个单位得到7、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 28、如图,已知点A、B在反比例函数y(k0,x0)的图象上,点P沿CABO的路线(图中“”所示路线)匀速运动,过点P作PMx轴于点M,设点P的运动时间为t,POM的面积为S,则S关于t的函数图象大致为()ABCD9、抛物线y(x+2)2+1可由抛物线yx2平移得到,下列平移正确的是()A先向右平移2个单位,再向上平移1个单位B先向右平移2个单位,再向下平移1个单位C先向左平移2个单位,再向上平移1个单位D先向左平移2个单位,再向下平移1个单位10、抛物线y(x2)23的顶点坐标是( )A(2,3)B(2,3)C(2,3)D(2,3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知P(,),Q(,)两点都在抛物线上,那么_2、已知抛物线与x轴的两个交点在点(1,0)两旁,则m的取值范围是_3、将二次函数的图像向上平移一个单位,再向右平移两个单位后,所得图像的函数解析式为_4、飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s60t1.5t2,飞机着陆后滑行 _米才能停下来5、如图,在RtABC中,C90°,记xAC,yBCAC,在平面直角坐标系xOy中,定义(x,y)为这个直角三角形的坐标,RtABC为点(x,y)对应的直角三角形有下列结论:在x轴正半轴上的任意点(x,y)对应的直角三角形均满足ABBC;在函数y(x0)的图象上存在两点P,Q,使得它们对应的直角三角形相似;对于函数y(x2020)21(x0)的图象上的任意一点P,都存在该函数图象上的另一点Q,使得这两个点对应的直角三角形相似;在函数y2x+2020(x0)的图象上存在无数对点P,Q(P与Q不重合),使得它们对应的直角三角形全等所有正确结论的序号是 _三、解答题(5小题,每小题10分,共计50分)1、疫情从未远去,据云南省卫健委通报,连续天,云南省的本土日新增确诊病例均超过例,从月日到月日,短短一周时间,本轮疫情中的本土确诊病例累计已达例,为了抗击“新冠”疫情后期输入,我省的医疗物资供给正常,某药店销售每瓶进价为元的消毒液,市场调查发现,每天的销售量瓶与每瓶的售价元之间满足如图所示的函数关系(1)求与之间的函数关系式;(2)政府部门规定每瓶消毒液售价不得超过元,当每瓶的销售单价定为多少元时,药店可获得最大利润?最大利润是多少?2、如图,抛物线yax2+bx+6与x轴交于A(2,0),B(8,0)两点,与y轴交于点C(1)求抛物线的解析式;(2)点P是抛物线上一动点,当PCBBCO时,求点P的横坐标3、如图,抛物线与轴交于,两点,与轴交于点,抛物线的顶点为,连接,为线段上的一个动点(不与、重合),过点作轴,交抛物线于点,交轴于点(1)求抛物线的解析式;(2)当时,求点的坐标;(3)连接、,当的面积等于的面积时(点与点不重合),求点的坐标;(4)在(3)的条件下,在轴上,是否存在点,使为等腰三角形,若存在,请直接写出点的坐标,若不存在,请说明理由4、在实施乡村振兴战略和移动互联快速进化的大背景下,某电商平台以10元/千克的价格收购一批农产品进行销售,经前期销售发现日销售量y(千克)与销售价格x(元/千克)之间满足一次函数关系,整理部分数据如下表:销售价格x(元/千克)1213141516日销售量y(千克)1000900800700600(1)求y关于x的函数表达式(2)为了稳定物价,有关管理部门规定这种农产品利润率不得高于50%,该平台应如何确定这批农产品的销售价格,才能使日销售利润w最大?(利润=售价成本,利润率=利润÷成本×100%)5、已知关于x的二次函数(1)如果二次函数的图象与x轴交于A,B两点(点A在点B的左侧),且AB=2,求m的值;(2)若对于每一个x值,它所对应的函数值都不小于1,求m的取值范围-参考答案-一、单选题1、D【分析】抛物线的平移规律:左加右减,上加下减,利用平移规律直接可得答案.【详解】解:抛物线向上平移2个单位长度得到的抛物线为 故选D【点睛】本题考查的是抛物线的平移,掌握“抛物线的上下平移规律”是解本题的关键.2、C【分析】根据二次函数的解析式可得出二次函数的对称轴为x=-1,分两种情况讨论,根据图象上点的坐标特征,得到关于m的不等式,解不等式即可得出结论【详解】解:抛物线y=的对称轴为x=-1,点A(1,y1),B(2,y2),C(m,y3)在抛物线y=上,且y1y2y3,当a0,在对称轴的右侧y随x的增大而减小,点A、B都在对称轴右侧,而y1y2,所以这种情况不存在;当a0,则|m+1|>(2+1)=3,解得m-4或m>2,m的值不可能是-3故选:C【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据二次函数的性质找出关于m的一元一次不等式本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质结合二次函数的对称轴找出不等式是关键3、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键4、C【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线开口向下,因此a0,对称轴为x=10,因此a、b异号,所以b0,抛物线与y轴交点在正半轴,因此c0,所以abc0,故正确;当x=2时,y=4a+2b+c0,故正确;抛物线与x轴交点(3,0),对称轴为x=1因此另一个交点坐标为(-1,0),所以a-b+c=0,又x=-=1,有2a+b=0,所以3a+c=0,而a0,c0,因此2a+c0,故不正确;由cx2+bx+a=0可得方程的解为和,抛物线与x轴交点(3,0),(-1,0),即方程ax2+bx+c=0的两根为x1=3,x2=-1;, 当时, 3a+c=0,c=-3a,cx2+bx+a=0的两根,x2=-1,故正确;抛物线y=ax2+bx+c与x轴交点(3,0),(-1,0),且a0,因此当y=-2时,相应的x的值大于3,或者小于-1,即m-1,n3,故正确;综上所述,正确的结论有:共4个,故选:C【点睛】本题考查二次函数的图象和性质,掌握二次函数的a、b、c的值决定抛物线的位置是正确判断的关键5、B【分析】根据二次函数的定义即可判断【详解】A. 是反比例函数,故此选项错误;B. 是二次函数,故此选项正确;C. 是一次函数,故此选项错误;D. 是正比例函数,故此选项错误故选:B【点睛】本题考查二次函数的定义:形如,其中,且a、b、c是常数,掌握二次函数的定义是解题的关键6、B【分析】根据二次函数的性质,增减性质可判断A,函数最值可判断B,函数图像的位置可判断C,利用平移的方向可判断D【详解】解:二次函数抛物线开口向上,当时,抛物线y随x增大而增大,故选项A不正确;当时,有最小值为2,故选项B正确;函数图像都在x轴上方,与x轴没有交点,故选项C不正确;该函数图象可由抛物线向右平移6个单位,再向上平移2个单位得到,故选项D不正确故选B【点睛】本题考查二次函数的性质,掌握二次函数的性质,以及平移法则上加下减,左加右减是解题关键7、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键8、D【分析】分别求当点P在CA路线上运动时;当AB路线上运动时;当点P在BO路线上运动时,S关于t的函数的解析式,即可求解【详解】解:当点P在CA路线上运动时,设点P运动速度为 , ,a、OA为常数,S是关于t的一次函数,图象为自左向右上升的线段;当AB路线上运动时,保持不变,本段图象为平行于x轴的线段;当点P在BO路线上运动时,随着t的增大,点P从点B运动至点O,OM的长在减小,OPM的高PM也随之减小到0,即的图象为开口向下的抛物线的一部分故选:D【点睛】本题主要考查了动点问题的函数图象,明确题意,得到每一段的函数解析式是解题的关键9、C【分析】根据平移的规律“左加右减,上加下减”,将yx2向左平移2个单位再向上平移1个单位即可得y(x+2)2+1,即可求得答案【详解】解:根据题意将yx2向左平移2个单位再向上平移1个单位即可得y(x+2)2+1,故选C【点睛】本题考查了二次函数的平移,掌握平移规律是解题的关键,理解题意弄清是谁平移到谁10、B【分析】由抛物线的顶点式y(xh)2k直接看出顶点坐标是(h,k)【详解】解:抛物线为y(x2)23,顶点坐标是(2,3)故选:B【点睛】此题主要考查二次函数顶点式,解题的关键是熟知抛物线的顶点式y(xh)2k的顶点坐标是(h,k)二、填空题1、4【分析】根据P(,),Q(,)的纵坐标相等,得出关于抛物线对称轴对称,即可求解【详解】解:P(,),Q(,)两点都在抛物线上,根据纵坐标相等得,P(,),Q(,)关于抛物线的对称轴对称,故答案是:4【点睛】本题考查了二次函数的图象的性质,解题的关键是掌握二次函数的对称性求解2、【分析】设抛物线与x轴的交点为(x1,0)和(x2,0),根据一元二次方程的判别式和根与系数的关系解答即可【详解】解:由于抛物线与x轴的两个交点在点(1,0)两旁,故设抛物线与x轴的交点为(x1,0)和(x2,0),则x1、x2是一元二次方程有两个不相等的实数根,x1+x2=m, x1·x2=m2,由题意,得:即,解得:,故答案为:【点睛】本题考查抛物线与x轴的交点问题、一元二次方程的根与系数关系、一元二次方程根的判别式、解一元一次不等式,熟练掌握抛物线与x轴的交点问题与一元二次方程根的关系是解得的关键3、【分析】根据“左加右减,上加下减”的法则即可得出结论【详解】解:二次函数的图象向上平移一个单位,再向右平移两个单位后,所得二次函数的解析式为故答案为:【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键4、600【分析】将函数解析式化为顶点式,利用函数的最值解答【详解】解:s60t1.5t2=,当t=20时,s有最大值600,故答案为:600【点睛】此题考查了将一般式函数化为顶点式,函数的最值,正确理解题意是解题的关键5、【分析】根据在x轴上点的坐标特征可得,即,再由勾股定理即可得到,即可判断;设P点坐标为(,),Q点坐标为(,),则P、Q两点对应的直角三角形的两条直角边分别为:,;,若P、Q对应的两个三角形相似,则或,由此即可判断;同理即可判断;设P点坐标为(,),Q点坐标为(,),则P、Q两点对应的直角三角形的两条直角边分别为:,;,若P、Q对应的两个三角形全等,即可判断【详解】解:点(x,y)在x轴的正半轴上,即,C=90°,故此说法正确;设P点坐标为(,),Q点坐标为(,),P、Q两点对应的直角三角形的两条直角边分别为:,;,若P、Q对应的两个三角形相似,或或,不符合题意,在函数上不存在两点P,Q,使得它们对应的直角三角形相似,故错误;设P点坐标为(,),Q点坐标为(,),P、Q两点对应的直角三角形的两条直角边分别为:,;,若P、Q对应的两个三角形相似,图像上的任意一点P都存在另一点Q,使得这两个点对应的直角三角形相似,故正确;设P点坐标为(,),Q点坐标为(,),P、Q两点对应的直角三角形的两条直角边分别为:,;,若P、Q对应的两个三角形全等,在函数y2x+2020(x0)的图象上存在无数对点P,Q(P与Q不重合),使得它们对应的直角三角形全等,故正确;故答案为:【点睛】本题主要考查了坐标与图形,全等三角形的性质,相似三角形的性质,一次函数,二次函数图像上点的坐标特征,x轴上点的坐标特征,熟知相关知识是解题的关键三、解答题1、(1);(2)当每瓶的销售单价定为元时,药店可获得最大利润,最大利润是元【分析】(1)先设出一次函数的解析式,再用待定系数法求解即可;(2)根据利润单盒利润销售量列出函数解析式,再根据函数的性质求函数的最值【详解】解:(1)设与之间的函数关系式为,由题意得:,解得:,与之间的函数关系式为;(2)设每天利润为元,则 ,当时,随的增大而增大,又,当时,最大,最大值为元,当每瓶的销售单价定为元时,药店可获得最大利润,最大利润是元【点睛】本题考查二次函数的应用以及待定系数法求函数解析式,关键是根据题意列出函数关系式2、(1);(2)或【分析】(1)由题意代入A(2,0),B(8,0)两点求出a、b的值,即可得出抛物线的解析式;(2)根据题意分点P在BC下方的抛物线上和点P在BC上方的抛物线上两种情况,结合全等三角形的判定与性质以及相似三角形的判定与性质进行分析即可得出答案.【详解】解:(1)由题意代入A(2,0),B(8,0)两点,可得:,解得:,所以抛物线的解析式为:;(2)当点P在BC下方的抛物线上时,此时PCBBCO 即CP平分BCO,如图,作CP平分BCO,交x轴于点D,过D作垂足为E,CP平分BCO,,设,,勾股定理可得:,即,解得:,即,D的坐标为(3,0),设CD的解析式为:,代入C、D可得:,解得:,所以CD的解析式为:,P为直线CD与抛物线的交点,联立可得:,解得:(舍去)或,即的横坐标为,当点P在BC上方的抛物线上时,此时PCBBCO,如图,作PCBBCO交抛物线于点P,延长DE交CP于点F,过E作EHx轴交于点H,PCBBCO,,可得,设F为,由可得,解得:,即F为,设CF的解析式为:,代入C、F可得:,解得:,所以CD的解析式为:,P为直线CF与抛物线的交点,联立可得:,解得:(舍去)或,即的横坐标为,综上所述的横坐标为或.【点睛】本题考查二次函数的综合问题,熟练掌握待定系数法求二次函数解析式和全等三角形的判定与性质以及相似三角形的判定与性质和角平分线性质是解题的关键.3、(1);(2)(2,1);(3)(2,1);(4)(0,),(0,),(0,-),(0,1)【分析】(1)应用待定系数法将ABC三点坐标代入解析式即可解答;(2)设P点横坐标为x,用x表示出PG、PF的长,再根据列方程求解即可;(3)当时,的面积等于的面积,先求出直线DF解析式,再求出直线DF与抛物线交点坐标F,进而根据点F坐标求出点P坐标;(4)分CP=CQ、CP=PQ、QC=QP讨论,分别求出Q点坐标【详解】解:(1)依题意得: ,解得:,抛物线的解析式为:;(2)点、点在直线BC上,直线BC解析式为:,设P点坐标为,则,当时,即:,解得:,(不合题意舍去),当时,P点坐标为(2,1),当时,点的坐标(2,1);(3),故抛物线的顶点为(1,4),当时,的面积等于的面积,设此时直线解析为,解得:,故直线解析为,依题意得:,解得:,点P的横坐标为x=2,此时点P坐标为(2,1)(4)点P坐标为(2,1);点C坐标(0,3),故CP=,设点Q坐标为(0,y)若,则;解得:,若,则,解得:(不合题意,舍去),;若,则,解得:;综上所述:点P为(0,),(0,),(0,-),(0,1)时,为等腰三角形【点睛】本题考查了二次函数待定系数法求解函数解析式的基本思路,同时考察了数形结台思想和建立数学模型以及发散思维构造图形并推理逻辑的能力4、(1)y关于x的函数表达式为;(2)当销售价格为15元时,才能使日销售利润最大【分析】(1)设y关于x的函数表达式为,然后由表格任取两个数据代入求解即可;(2)由(1)及题意易得,然后根据“规定这种农产品利润率不得高于50%”及二次函数的性质可进行求解【详解】解:(1)设y关于x的函数表达式为,则把和代入得:,解得:,y关于x的函数表达式为;(2)由(1)及题意得:,-1000,开口向下,对称轴为直线,这种农产品利润率不得高于50%,解得:,当时,w随x的增大而增大,当时,w有最大值;答:当销售价格为15元时,才能使日销售利润最大【点睛】本题主要考查二次函数与一次函数的应用,解题的关键是得到销售量与销售价格的函数关系式5、(1);(2)【分析】(1)求出抛物线的对称轴直线,根据AB=2求出A、B点坐标,代入函数关系式求出m的值即可;(2)求出函数图象的顶点坐标,根据“对于每一个x值,它所对应的函数值都不小于1”列出不等式,求出m的取值范围即可【详解】解:(1)二次函数图象的对称轴为直线,A,B两点在x轴上(点A在点B的左侧),且AB=2,A(,),B(,)把点(,)代入中,.(2)对称轴为直线,二次函数图象顶点坐标为(2,),二次函数图象的开口方向向上,二次函数图象有最低点,若对于每一个x值,它所对应的函数值都不小于1,【点睛】本题考查的是二次函数与数轴的交点问题,熟练掌握二次函数的图象与性质是解答本题的关键

    注意事项

    本文(2022年精品解析北师大版九年级数学下册第二章二次函数重点解析试卷(含答案详细解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开