2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布综合练习试题(精选).docx
-
资源ID:32547731
资源大小:390.67KB
全文页数:21页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布综合练习试题(精选).docx
京改版八年级数学下册第十七章方差与频数分布综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:=13,=15:=3.6,=6.3则麦苗又高又整齐的是()A甲B乙C丙D丁2、下列说法中正确的是( )A想了解某河段的水质,宜采用全面调查B想了解某种饮料中含色素的情况,宜采用抽样调查C数据1,1,2,2,3的众数是3D一组数据的波动越大,方差越小3、已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是()A平均数B中位数C众数D方差4、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A中位数是6.5B众数是12C平均数是3.9D方差是65、垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有40名同学参加了学校组织的2020年“生活垃圾分类回收”的考试考试规定成绩大于等于96分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( )参加人数平均数中位数方差甲4095935.1乙4095954.6A甲班的成绩比乙班的成绩稳定B甲班成绩优异的人数比乙班多C甲,乙两班竞褰成绩的众数相同D小明得94分将排在甲班的前20名6、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为( )A9B8C7D67、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()A14B12C9D88、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A甲B乙C丙D丁9、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计下图是整理数据后绘制的两幅不完整的统计图以下结论不正确的是( ) A由这两个统计图可知喜欢“科普常识”的学生有90人B若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个C由这两个统计图不能确定喜欢“小说”的人数D在扇形统计图中,“漫画”所在扇形的圆心角为10、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( )甲乙丙丁 方差3.63.244.3A甲组B乙组C丙组D丁组第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是5,那么另一组数据3x12,3x22,3x32,3x42,3x52的平均数和方差的和为_2、一组数据:2021,2021,2021,2021,2021,2021的方差是_3、已知一组数据a,b,c的方差为4,那么数据3a2,3b2,3c2的方差是_4、若整数1至50的方差为,整数51至100的方差为,则与的大小关系是_5、数据1,3,2,5和x的平均数是3,则这组数据的方差是_三、解答题(5小题,每小题10分,共计50分)1、为弘扬中华传统文化,某校开展“戏剧进课堂”活动该校随机抽取部分学生,四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了 名学生;(2)请补全类条形统计图;(3)扇形统计图中类所对应的扇形圆心角的大小为 度;(4)该校共有1560名学生,估计该校表示“很喜欢”的类的学生有多少人?2、2020年冬季达州市持续出现雾霾天气某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表级别观点频数(人数)A大气气压低,空气不流动80B地面灰尘大,空气湿度低mC汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m ,n ,扇形统计图中E组所占的百分比为 %;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数(3)治污减霾,你有什么建议?3、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩;(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖4、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查 名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有多少人?5、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图根据以上信息,解答下列问题:(1)德育处一共随机抽取了_名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?-参考答案-一、单选题1、D【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可【详解】解:,乙、丁的麦苗比甲、丙要高,甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D【点睛】本题主要考查了方差的意义和应用,解题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定2、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B【点睛】本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查一组数据中出现次数最多的数据叫做众数方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好3、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可【详解】A第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意B由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意C由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意D由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意故选:D【点睛】本题考查平均数,中位数,众数,方差的定义掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键4、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;D、这组数据的方差是:×(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2=6;故选:D【点睛】本题考查了平均数,中位数,众数和方差的意义平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量5、D【分析】分别根据方差的意义、中位数意义、众数的定义及平均数的意义逐一判断即可【详解】A乙班成绩的方差小于甲班成绩的方差,所以乙班成绩稳定,此选项错误,不符合题意;B乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,此选项错误,不符合题意;C根据表中数据无法判断甲、乙两班成绩的众数,此选项错误,不符合题意;D因为甲班共有40名同学,甲班的中位数是93分,所以小明得94分将排在甲班的前20名,此选项正确,符合题意;故选:D【点睛】本题考查了平均数、中位数、方差及众数的概念,平均数、中位数及众数反映的是一组数据的平均趋势及水平,平均数与每个数据有关;方差反映的是一组数据的波动程度,在平均数相同的情况下,方差越小,说明数据的波动程度越小,也就是说这组数据更稳定6、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键7、B【分析】根据样本频数直方图、样本容量的性质计算,即可得到答案【详解】根据题意,第二组的频数是: 故选:B【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解8、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛【详解】解:根据题意,丁同学的平均分为:,方差为:;丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,应该选择丁同学去参赛;故选:D【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定9、C【分析】根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项【详解】A喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;B若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;C喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.D在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;故选C.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小10、B【分析】由平均数相同,根据方差越小越稳定可得出结论【详解】解:4.343.63.2,四个小组的平均分相同,乙组各成员实力更平均,选择乙组代表年级参加学校决赛故选择B【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键二、填空题1、49【分析】根据平均数及方差知识,直接计算即可.【详解】数据,的平均数是2,即,的平均数为:,数据,的方差是5,即,的方差为:,平均数和方差的和为,故答案为:49.【点睛】本题是对平均数及方差知识的考查,熟练掌握平均数及方差计算是解决本题的关键.2、0【分析】根据方差的定义求解【详解】这一组数据都一样平均数为2021方差=故答案为:0【点睛】本题考查方差的计算方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定3、36【分析】根据“当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍”求解可得【详解】解:数据a,b,c的方差为4,数据3a2,3b2,3c2的方差32×436,故答案为:36【点睛】本题考查了方差的定义当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍4、【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案【详解】解:整数51至100是整数1至50的每一个数都加上50所得,一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,波动程度不变,方差不变,则故答案为:【点睛】本题考查方差的意义:一般地设个数据,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变5、2【分析】先由平均数的公式计算出x的值,再根据方差的公式计算一般地设n个数据,x1,x2,xn的平均数为 , (x1+x2+xn),则方差 【详解】解:x=5×3-1-3-2-5=4,s2= (1-3)2+(3-3)2+(2-3)2+(5-3)2+(4-3)2=2故答案为:2【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,xn的平均数为 , (x1+x2+xn),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立三、解答题1、(1)60;(2)补全统计图见详解;(3);(4)估计该校表示“很喜欢”的A类的学生有260人【分析】(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可; (2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B类人数占总调查人数的比值,将计算结果乘即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可【详解】解:(1)此次调查学生总数:(人),故答案为:60;(2)D类人数为:(人),补全条形统计图,如图所示,(3)扇形统计图中,B类所对应的扇形圆心角的大小为:,故答案为:;(4)(人)估计该校表示“很喜欢”的A类的学生有260人【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键2、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可【详解】解:(1)本次调查的总人数为80÷20%400(人),则B组人数m400×10%40(人),C组人数n400(80+40+120+60)100(人),扇形统计图中E组所占的百分比为(60÷400)×100%15%;(2)200×60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键3、(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙【分析】(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;(2)利用乙队成绩的总和除以10,即可求解;(3)分别两队的平均成绩和方差,即可求解【详解】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,甲队成绩的中位数是 分,乙队成绩中10出现了4次,出现的次数最多,乙队成绩的众数是10分;(2)乙队的平均成绩为 分;(3)甲队的平均成绩为 分,甲队成绩的方差为乙队成绩的方差为,甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,乙队的成绩更加稳定,选择乙【点睛】本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键4、(1)100;(2)见解析;(3)600【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;(3)利用样本估计总体即可估计爱好运动的学生人数【详解】解:(1)爱好运动的人数为,所占百分比为共调查人数为:,故答案为:;爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,(3)爱好运动的学生人数所占的百分比为,估计爱好运用的学生人数为:,故答案为:;【点睛】本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息5、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小