欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度强化训练北师大版九年级数学下册第三章-圆难点解析练习题(精选).docx

    • 资源ID:32548321       资源大小:1.03MB        全文页数:32页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度强化训练北师大版九年级数学下册第三章-圆难点解析练习题(精选).docx

    北师大版九年级数学下册第三章 圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,BD是O的切线,BCE30°,则D()A40°B50°C60°D30°2、如图,RtABC中,A90°,B30°,AC1,将RtABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)3、如图,点A、B、C在O上,BAC56°,则BOC的度数为( )A28°B102°C112°D128°4、如图,点,在上,是等边三角形,则的大小为( )A60°B40°C30°D20°5、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD6、如图,已知中,则圆周角的度数是( )A50°B25°C100°D30°7、已知O的半径等于5,圆心O到直线l的距离为6,那么直线l与O的公共点的个数是( )A0B1C2D无法确定8、如图,点A,B,C在O上,ACB37°,则AOB的度数是( )A73°B74°C64°D37°9、如图,是的直径,、是上的两点,若,则( )A15°B20°C25°D30°10、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( )A20°B25°C30°D40°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,以点为圆心,2为半径的与相切于点,交于点,交于点,点是上一点,且,则图中阴影部分的面积是_2、如图,AB是半圆O的直径,AB4,点C,D在半圆上,OCAB,点P是OC上的一个动点,则BPDP的最小值为_3、如图,正六边形ABCDEF内接于O,若O的周长为8,则正六边形的边长为_ 4、用一个半径为2的半圆作一个圆锥的侧面,这个圆锥的底面圆的半径为_5、已知正六边形的周长是24,则这个正六边形的半径为_ 三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,点M在x轴上,以点M为圆心的圆与x轴交于,两点,对于点和,给出如下定义:若抛物线经过A,B两点且顶点为P,则称点为的“图象关联点”(1)已知,在点E,F,G,H中,的”图象关联点”是_;(2)已知的“图象关联点”P在第一象限,若,判断OP与的位置关系,并证明;(3)已知,当的“图象关联点”在外且在四边形ABCD内时,直接写出抛物线中a的取值范围2、如图,AC是O的直径,PA、PB是O的切线,切点分别是点A、B(1)如图1,若BAC25°,求P的度数(2)如图2,若M是劣弧AB上一点,AMBAOB,BC2,求AP的长3、如图,在中,CD平分P为边BC上一动点,将沿着直线DP翻折到,点E恰好落在的外接圆上(1)求证:D是AB的中点(2)当,时,求DC的长(3)设线段DB与交于点Q,连结QC,当QC垂直于的一边时,求满足条件的所有的度数4、如图,点C是以AB为直径的半圆O上一点,且,AD平分交BC于点D,CP平分交AD于点P,(1)求证:四边形CEPF为正方形;(2)求的最大值;(3)求的最小值5、如图,在ABC中,以AB为直径的O交BC于点D,与CA的延长线交于点E,O的切线DF与AC垂直,垂足为F(1)求证:ABAC(2)若CF2AF,AE4,求O的半径-参考答案-一、单选题1、D【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得【详解】解:连接 BD是O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键2、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90°,B30°,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线3、C【分析】直接由圆周角定理求解即可【详解】解:A56°,A与BOC所对的弧相同,BOC2A112°,故选:C【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半4、C【分析】由为等边三角形,得:AOB=60°,再根据圆周角定理,即可求解【详解】解:为等边三角形,AOB=60°,=AOB =×60°=30°故选C【点睛】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解题的关键5、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60°然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90°,CDB=30°,COB=2CDB=60°,OCE=30°,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键6、B【分析】根据圆周角定理,即可求解【详解】解: , 故选:B【点睛】本题主要考查了圆周角定理,熟练掌握同圆(或等圆)中,同弧(或等弧)所对的圆周角等于圆心角的一半是解题的关键7、A【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案【详解】解:O的半径等于为8,圆心O到直线l的距离为为6,直线l与相离,直线l与O的公共点的个数为0,故选A【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键8、B【分析】根据圆中同弧或等弧多对应的圆周角是圆心角的一半,可知AOB=2ACB=74°,即可得出答案【详解】解:由图可知,AOB在O中为对应的圆周角,ACB在O中为对应的圆心角,故:AOB=2ACB=74°故答案为:B【点睛】本题主要考查的是圆中的基本性质,同弧对应的圆周角与圆心角度数的关系,熟练掌握圆中的基本概念是解本题的关键9、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周角是直角,即可得到结论【详解】解:BOC=130°,BDC=BOC=65°,AB是O的直径,ADB=90°,ADC=90°-65°=25°,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键10、B【分析】连接OA,如图,根据切线的性质得PAO=90°,再利用互余计算出AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90°,P=40°,AOP=50°,OA=OB,B=OAB,AOP=B+OAB,B=AOP=×50°=25°故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系二、填空题1、【分析】连接AD,由圆周角定理可求出,即可利用扇形面积公式求出由切线的性质可知,即可利用三角形面积公式求出最后根据,即可求出结果【详解】如图,连接AD,BC是O切线,且切点为D,故答案为:【点睛】本题考查圆周角定理,切线的性质,扇形的面积公式连接常用的辅助线是解答本题的关键2、【分析】如图,连接AD,PA,PD,OD首先证明PA=PB,再根据PD+PB=PD+PAAD,求出AD即可解决问题【详解】解:如图,连接AD,PA,PD,ODOCAB,OA=OB,PA=PB,COB=90°,DOB=×90°=60°,OD=OB,OBD是等边三角形,ABD=60°AB是直径,ADB=90°,AD=ABsinABD=2,PB+PD=PA+PDAD,PD+PB2,PD+PB的最小值为2,故答案为:2【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题3、4【分析】由周长公式可得O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长【详解】O的周长为8O半径为4正六边形ABCDEF内接于O正六边形ABCDEF中心角为正六边形ABCDEF为6个边长为4的正三角形组成的正六边形ABCDEF边长为4.故答案为:4【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键4、1【分析】先求出扇形的弧长,然后根据扇形的弧长等于圆锥底面圆的周长,设圆锥的底面圆的半径为r,列出方程求解即可得【详解】解:半径为2的半圆的弧长为:,围成的圆锥的底面圆的周长为2设圆锥的底面圆的半径为r,则:,解得:,故答案为:1【点睛】题目主要考查圆锥与扇形之间的关系,一元一次方程的应用,熟练掌握圆锥与扇形之间的关系是解题关键5、4【分析】由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解【详解】解:正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,又正六边形的周长为24,正六边形边长为24÷6=4,正六边形的半径等于4故答案为4【点睛】此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题三、解答题1、(1)F,H;(2)相切,见解析;(3)a【分析】(1)根据抛物线的对称性求出顶点横坐标,然后判断即可;(2)连接PM,过点M作MNOP于N,证明即可;(3)求出点纵坐标为1.5或2时的函数解析式,再判断a的取值范围即可【详解】解:(1)抛物线经过,两点且顶点为P,则顶点P的横坐标为,在点E,F,G,H中,横坐标为,在点E,F,G,H中,的”图象关联点”是F,H;故答案为:F,H;(2)OP与M的位置关系是:相切. AB为M的直径,为的中点.A(1,0), B(4,0),.连接PM.P为M的“图象关联点”,点P为抛物线的顶点. 点P在抛物线的对称轴上.PM是AB的垂直平分线.PMAB.过点M作MNOP于N.OPPM OP与M相切(3)由(1)可知,顶点P的横坐标为,由(2)可知M的半径为1.5,已知,当的“图象关联点”在外且在四边形ABCD内时,顶点P的纵坐标范围是大于1.5且小于2,当抛物线顶点坐标为(2.5,2)时,设抛物线解析式为,把代入得,解得,;当抛物线顶点坐标为(2.5,1.5)时,设抛物线解析式为,把代入得,解得,;a的取值范围a【点睛】本题考查了二次函数的综合和切线的证明,解题关键是熟练运用二次函数的性质和切线判定定理进行求解与证明2、(1);(2)【分析】(1)由题意先根据切线长定理得到PA=PB,则利用等腰三角形的性质得PAB=PBA,再根据切线的性质得,于是利用互余计算出PAB=65°,然后根据三角形内角和定理计算P的度数(2)根据题意圆的内接四边形的性质得出,进而判定为等边三角形利用其性质结合勾股定理即可求出AP的长【详解】解:(1)PA、PB是的切线,AC是的直径,在中,(2)四边形ACBM内接于,又,AC为的直径,又,为等边三角形,在中,则,.【点睛】本题考查切线长定理和切线的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题3、(1)证明见解析;(2);(3)当QC垂直于DPE的一边时,QCB=15°或22.5°【分析】(1)由翻折的性质可得B=DEP,再由DCP=DEP,即可得到B=DCP,CD=BD,再由角平分线的定义得到,则BDC=90°,即可利用三线合一定理得到BD=AD,即D是AB的中点;(2)由DPE是DPB翻折得到,得到,如图所示,过点P作PFAB于F,先利用勾股定理求出,得到,即可求出,则;(3)分当CQDP时,当DECQ时,当PECQ时三种情况进行讨论求解即可得到答案【详解】解:(1)DPE是DPB翻折得到,B=DEP,又DCP=DEP,B=DCP,CD=BD,ACB=90°,CD平分ACB,= A,BDC=90°,CA=CB,BD=AD(三线合一定理),D是AB的中点;(2)DPE是DPB翻折得到,如图所示,过点P作PFAB于F,PFB=PFD=90°,DP=2PF,B=45°,BPF=90°-B=45°,BPF=B,BF=PF,; (3)如图所示,当CQDP时,CDQ=90°,CQ为圆O的直径,由垂径定理可知,即;如图所示,当DECQ时,设DE与CQ交于点F,连接CE,DPE是DPB翻折得到,BD=DE,又BD=CD,CD=ED,DEC=DCE,DEC=DCP+ECP=ECP+45°,QCP=ECP,DEC=QCP+45°,又CQDE,CFE=90°,FCE+FEC=90°,QCP+45°+QCP+ECP=90°,即3QCP+45°=90°,QCP=15°,即QCB=15°,当PECQ时,E点要在CD的下方,此时圆O与直线BD的交点在BD的延长线上,不存在PECQ这种情况,综上所述,当QC垂直于DPE的一边时,QCB=15°或22.5°【点睛】本题主要考查了折叠的性质,圆周角定理,垂径定理,直径所对的圆周角是直角,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,勾股定理等等,解题的关键在于能够熟练掌握圆的相关知识4、(1)见详解;(2)2;(3)【分析】(1)由圆周角定理,得到,得到四边形CEPF为矩形,再由角平分线的性质定理,得到PE=PF,即可得到结论成立;(2)过点C作CGAB,当最大时,有最大值,利用三角形的面积公式,即可求出答案;(3)设,由相似三角形的判定和性质,得到,则取最大值时,有最小值,然后求出的最大值,即可得到答案【详解】解:(1)证明:AB为直径,四边形CEPF是矩形,CP平分,四边形CEPF为正方形;(2)过点C作CGAB,如图:由可知,当最大时,有最大值,即;由三角形的面积公式,则,;的最大值是2;(3)设,PEAC,PEDACD,;同理:PFBC,PAFDAC,由+,得,即,;当x取最大值时,有最小值;AD平分,点P为ACB的内心,PE,PF为内切圆半径;作PHAB,垂足为H,如图:则易得AF=AH,BE=BH,设,的最大值为;的最大值为,的最小值;【点睛】本题考查了相似三角形的判定和性质,正方形的判定和性质,角平分线的性质定理,圆周角定理,三角形的内心等知识,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题5、(1)证明见解析;(2)的半径为6【分析】(1)根据圆切线的性质可得,然后根据等腰三角形的等边对等角以及等角对等边可得出结论;(2)根据圆周角定理以及等腰三角形的判定与性质可得结果【详解】解:(1)证明:如图,连接是的切线,(2)如图,连接,则由(1)知,的半径为6【点睛】本题考查了圆切线的性质,圆周角定理,等腰三角形的性质与判定,平行线的判定与性质,熟练掌握相关性质定理是解本题的关键

    注意事项

    本文(2021-2022学年度强化训练北师大版九年级数学下册第三章-圆难点解析练习题(精选).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开