精品解析2022年人教版九年级数学下册第二十六章-反比例函数综合训练试题(含答案解析).docx
-
资源ID:32548459
资源大小:649.95KB
全文页数:32页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品解析2022年人教版九年级数学下册第二十六章-反比例函数综合训练试题(含答案解析).docx
人教版九年级数学下册第二十六章-反比例函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF若点E为AC的中点,AEF的面积为2,则k的值为( )A2B4C6D82、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S23、如图,的顶点C在x轴上,B在y轴上,点A在反比例函数的图象上,边上的中线与x轴相交于点E,若,的面积为4,则k的值为( )A4B6C8D104、已知反比例函数y的图象如图所示,则一次函数ycx+a和二次函数yax2bx+c在同一直角坐标系中的图象可能是()ABCD5、下列四个函数图象,一定不过原点的是()AyxByCyx2Dyx26、已知函数是反比例函数,则的值为( )A1B1C±1D±27、市一小学数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示,设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形长y(cm)与宽x(cm)之间的函数关系的图象大致是( )A BCD8、在平面直角坐标系中,点,分别在三个不同的象限,若反比例函数的图像经过其中两点,则m的值为( )A2BC2或3D或9、设A(x1,y1)、B(x2,y2)是反比例函数y图象上的任意两点,且y1y2,则x1、x2不可能满足的关系是()Ax1x20B0x1x2C0x2x1Dx20x110、如图,过原点的一条直线与反比例函数的图象分别交于A,B两点,若A点的坐标为,则B点的坐标为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB与x轴交于点,与x轴夹角为30°,将沿直线AB翻折,点O的对应点C恰好落在双曲线上,则k的值为_2、在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有_个,这些边整点落在函数的图象上的概率是 _3、如图,已知,是反比例函数图象上的两点,动点在轴正半轴上运动,当达到最大时,点的坐标是_4、已知反比例函数,则m=_,函数的表达式是_5、一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力,将相同重量的水桶吊起同样的高度,若,则这四位同学对杆的压力的作用点到支点的距离最远的是_三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中,直线yx与反比例函数y的图象在第一、三象限分别交于A、B两点,已知B点的纵坐标是2(1)写出点A的坐标,并求反比例函数的表达式;(2)将直线yx沿y轴向上平移5个单位后得到直线l,l与反比例函数图象在第一象限内交于点C,与y轴交于点D()SABCSABD;(请用“”或“”或“”填空)()求ABC的面积2、如图,直线yax(a0)与双曲线(k0)交于A,B两点,且点A的坐标为(4,2)(1)求a和k的值;(2)求点B的坐标;(3)y轴上有一点C,联结BC,如果线段BC的垂直平分线恰好经过点A,求点C的坐标3、如图,在平面直角坐标系xOy中,一次函数的图象过点,且与函数的图象交于点(1)求一次函数的解析式;(2)若P是x轴上一点,的面积是5,请求出点P的坐标;(3)直接写出不等式的解集4、如图,一次函数的图象与反比例函数(k为常数,且)的图象交与,B两点 (1)求反比例函数的表达式及点B的坐标;(2)点P在反比例函数第三象限的图象上,使得的面积最小,求满足条件的P点坐标及面积的最小值;(3)设点M为x轴上一点,点N在双曲线上,以点A,B,M,N为顶点的四边形能否为平行四边形?若能,求出N点坐标:若不能,请说明理由5、如图,一次函数(k0)与反比例函数(m0)的图象交于点A(1,a)和B(-2,-1)与轴交于点(1)_,_,当时,的取值范围为_;(2)连接、,求的面积-参考答案-一、单选题1、C【分析】设 ,根据矩形的性质,可得 ,再由点E为AC的中点,可得点E的纵坐标为 ,从而得到 ,进而得到 ,再由AEF的面积为2,可得到ACF的面积为4,即可求解【详解】解:设 ,四边形ABCD为矩形, ,点E为AC的中点,点E为BD的中点,B在x轴的正半轴上,点E的纵坐标为 , ,点E为AC的中点, , ,AEF的面积为2,AE=CE,ACF的面积为4,即 ,解得: 故选:C【点睛】本题主要考查了反比例函数的图象和性质,几何意义,矩形的性质,利用数形结合思想解答是解题的关键2、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键3、C【分析】连接AE,根据已知条件及角之间的关系可得:,由等角对等边可得,依据直角三角形的判定可得为直角三角形,设,则,设DE直线的解析式为:,将点D、E代入确定函数解析式,得到点B的坐标,求出线段OB、CE长度,然后计算三角形面积求解即可得【详解】解:连接AE,D为AC中点,为直角三角形,设,则,设DE直线的解析式为:,将点D、E代入可得:,解得:,点,解得:,故选:C【点睛】题目主要考查反比例函数与三角形面积问题,包括直角三角形的判定和性质,利用待定系数法确定一次函数解析式,等腰三角形的性质等,理解题意,设出两个点的坐标,求出一次函数解析式是解题关键4、D【分析】根据反比例函数图象的性质得到,再根据一次函数与二次函数的图象性质判断即可;【详解】反比例函数的图象在一、三象限,A二次函数的开口向上,对称轴在y轴右侧,a、b异号,与不相符,故A错误;B. 二次函数的开口向下,对称轴在y轴右侧,a、b异号,与已知b>0矛盾故B错误;C.二次函数的开口向上,对称轴在y轴右侧,a、b异号,二次函数图象与y轴交于负半轴,一次函数ycx+a的图象过二、三、四象限,故C错误;D. 二次函数的开口向上,对称轴在y轴右侧,a、b异号,c<0,则b>0,所以一次函数图象经过第一、二、四象限故D正确;故选D【点睛】本题主要考查了反比例函数的图象性质,一次函数的图象性质,二次函数的图象性质,准确分析判断是解题的关键5、B【分析】根据正比例函数,反比例函数以及二次函数的性质对选项逐个判断即可【详解】解:A、,经过原点,不符合题意;B、,反比例函数,不经过原点,符合题意;C、,二次函数,经过原点,不符合题意;D、,经过原点,不符合题意;故选B【点睛】此题考查了正比例函数,反比例函数以及二次函数的性质,掌握它们的性质是解题的关键6、A【分析】根据反比例函数的定义,反比例函数的一般式是y= (k0),即可得到关于n的方程,解方程即可求出n【详解】解:函数是反比例函数,n+10且n221,n1,故答案选A【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般式y= (k0),特别注意不要忽略k0这个条件7、A【分析】根据题意有:xy=200;故y与x之间的函数图象为反比例函数,且根据x、y的实际意义有x、y应大于0【详解】解:xy=200y= (x>0,y>0)故选A【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限8、B【分析】利用点过反比例函数图象,将点坐标代入求出反比例解析式,再求出m即可【详解】解:根据反比例函数图像性质,若k>0,则反比例函数图象过第一、三象限;若k<0,则反比例函数图象过第二、四象限若点A(1,4)在反比例函数图象上,则,解得k=4,反比例函数图象过第一、三象限故点C需在第三象限,与点C横坐标为2矛盾,若点B(-2,3)在反比例函数图象上,则,解得k=-6,反比例函数图象过第二、四象限故点C需在第四象限,将点C(2,m)代入反比例函数解析式得,符合题意,综上,m的值为-3故选B【点睛】本题考查了反比例函数图像性质,能熟练掌握反比例函数k值影响图象所在象限是解题的关键9、C【分析】根据反比例函数y,k=-10,得出反比例函数位于二、四象限,在每个象限内y随x的增大而增大, 当A、B都在第二象限,且y1y2,可得x1x20,故选项A成立;当A、B都在第四象限,可得0x1x2,故选项B成立;当A、B在不同象限,且y1y2,点B在第二象限,点A在第四象限,可得x20 x1,故选项D成立即可【详解】解:反比例函数y,k=-10,反比例函数位于二、四象限,在每个象限内y随x的增大而增大,当A、B都在第二象限,且y1y2,x1x20,故选项A成立;当A、B都在第四象限,且y1y2,0x1x2,故选项B成立;当A、B在不同象限,且y1y2,点B在第二象限,点A在第四象限,x20 x1,故选项D成立,故x1、x2不可能满足的关系是C故选C【点睛】本题考查反比例函数性质,利用反比例函数值的大小确定自变量的大小关系,掌握反比例函数性质是解题关键10、C【分析】根据题意可知,A、B关于原点对称,则根据对称性即可得到B点坐标【详解】解:过原点的一条直线与反比例函数 的图象分别交于A,B两点,点A的坐标为(3,-5),A、B关于原点对称,B点坐标为(-3,5)故选C【点睛】本题考查了反比例函数图象的对称性,解决这类题目的关键是掌握两点的对称中心为原点二、填空题1、【解析】【分析】如图,过点C作CDx轴于D,根据折叠性质可得CAB=BAO=30°,AC=OA=2,可得ACD=30°,根据含30°角的直角三角形的性质可得AD的长,利用勾股定理可得出CD的长,即可得出点C坐标,代入即可得答案【详解】A(,0),OA=2,将沿直线AB翻折,点O的对应点C恰好落在双曲线上,BAO=30°,CAB=BAO=30°,AC=OA=2,CAO=60°,ACD=30°,AD=AC=1,OD=OA=1,CD=,点C在第二象限,点C坐标为(,),点C在在双曲线上,故答案为:【点睛】本题考查折叠性质、含30°角的直角三角形的性质、勾股定理及反比例函数图象上的点的坐标特征,30°角所对的直角边等于斜边的一半;图形折叠前后对应边相等,对应角相等;正确得出点C坐标是解题关键2、【解析】【分析】利用整点的个数与正方形的序号数的关系可得到第四个正方形有4×4个边整点,第五个正方形有5×4个边整点,则可计算出其边整点的个数为60个,然后根据反比例函数图象上点的坐标特征可确定这些边整点落在函数的图象上的个数,再利用概率公式求解【详解】解:第一个正方形有1×4个边整点, 第二个正方形有2×4个边整点, 第三个正方形有3×4个边整点, 第四个正方形有4×4个边整点, 第五个正方形有5×4个边整点, 所以其边整点的个数共有 4+8+12+16+20=60个, 这些边整点落在函数的图象上的有(1,4),(4,1),(2,2),(-1,-4),(-4,-1),(-2,-2), 所以些边整点落在函数的图象上的概率= 故答案为60,【点睛】本题考查了简单随机事件的概率,利用例举法得到所有等可能的结果数为n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率也考查了解决规律型问题的方法和反比例函数图象上点的坐标特征3、【解析】【分析】求出A、B的坐标,设直线AB的解析式是ykx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|APBP|AB,延长AB交x轴于P,当P在P点时,PAPBAB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可【详解】解:把A(1,y1),B(2,y2)代入反比例函数得:y12,y21,A(1,2),B(2,1),在ABP中,由三角形的三边关系定理得:|APBP|AB,延长AB交x轴于P,当P在P点时,PAPBAB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是ykx+b,把A、B的坐标代入得:,解得:k1,b3,直线AB的解析式是yx+3,当y0时,x3,即P(3,0)故答案为(3,0)【点睛】本题主要考查了反比例函数的综合题的知识,熟练掌握三角形的三边关系定理和用待定系数法求一次函数的解析式,解此题的关键是确定P点的位置4、 1 y【解析】【分析】根据反比例函数的定义即y(k0),只需令m221、m10即可【详解】解:依题意有m221且(m1)0,所以m1函数的表达式是y故答案为:1,y【点睛】本题考查了反比例函数的定义,重点是将一般式(k0)转化为ykx1(k0)的形式5、甲【解析】【分析】利用杠杆原理,得到力的大小与对杆的压力的作用点到支点的距离成反比关系,再通过比较力的大小,即可得到正确答案【详解】解:由物理知识得,力臂越大,用力越小,力的大小与对杆的压力的作用点到支点的距离成反比,且将相同重量的水桶吊起同样的高度,甲同学对杆的压力的作用点到支点的距离最远,故答案为:甲【点睛】本题主要是考查了反比关系,利用反比关系,比较不同量的大小,熟练掌握反比关系,是求解该题的关键三、解答题1、(1)y,A(6,2);(2)();()30【分析】(1)根据点B的纵坐标是2,结合正比例函数可得B(6,2),利用点B在反比例函数图像上,求出反比例函数的表达式为,再利用解方程组时,求出点A即可;(2)()根据直线沿y轴向上平移5个单位后得到直线l,得出直线AB与直线l1互相平行,可得平行线间的距离处处相等,两三角形底相同,高是平行线间的距离可得SABCSABD;()根据平移可得OD5,利用SABDSBOD+SAOD求出SABD,再利用SABCSABD可求【详解】解:(1)点B的纵坐标是2,即x6,B(6,2),把B的坐标代入,即k12,反比例函数的表达式为,点A是两函数的交点解方程组得A(6,2);(2)()SABCSABD;直线沿y轴向上平移5个单位后得到直线l,直线AB与直线l1互相平行,平行线间的距离处处相等,SABCSABD;故答案为:;()由题意得,OD5,SABDSBOD+SAOD=,SABCSABD30【点睛】本题考查一次函数及其应用;反比例函数及其应用;模型思想反比例函数和一次函数的交点问题,根据题意求出函数解析式是解题关键2、(1)a,k8;(2)B(4,2);(3)C(0,6)或(0,10)【分析】(1)根据待定系数法即可求得a和k的值;(2)联立直线和双曲线解析式,即可得到点B坐标;(3)由垂直平分线的性质可知ACAB,利用两点间距离公式建立等式,求解即可【详解】解:(1)直线yax(a0)过点A(4,2),4a2,a,双曲线(k0)过点A,k2×48a,k8(2)令x,解得x±4,当x4时,y2,B(4,2)(3)设点C(0,y),由点A,B,C的坐标可知,AB4,AC,线段BC的垂直平分线恰好经过点A,ABAC,即4,解得y6,或y10C(0,6)或(0,10)【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法求一次函数和反比例函数的解析式,反比例函数图象上点的坐标特征,求得C的坐标是解题的关键3、(1);(2)或;(3)【分析】1)将A点坐标代入代入,求出m的值为2,再将代入,求出k的值,即可得到一次函数的解析式;(2)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加;(3)根据图象即可求得【详解】(1)将代入得,m=-2,则A点坐标为A(-2,2),将A(-2,2)、代入得,解得,则一次函数解析式为;(2)一次函数与x轴的交点为CSABP=SACP+SBPC,解得,则P点坐标为或(2)A(-2,2),由图象可知不等式的解集为;【点睛】本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键4、(1)反比例函数表达式:,点坐标为(3,1);(2)点P坐标的为(,),面积的最小值为;(3)N点坐标为(,)或(,)或(,)【分析】(1)将点A的坐标代入,求出值,进而代入求出值,最后联立反比例函数与一次函数解析式,求出B点坐标(2)当的面积最小时,以AB为底,此时需满足点P到AB的距离最短即可,故向下平行直线AB,当与在第三象限的图像恰好有一个交点时,此点即为P点,过点P向直线AB做垂线,求出垂线的直线解析式,进而求出垂线与直线AB的交点坐标,最后利用两点距离公式,求出的底AB和高,面积即可求出(3)设出M点和N点的横坐标,由于平行四边形的顶点顺序不确定,故分成三类情况,即:,根据平行四边形的性质:对角线互相平分,可以利用两条对角线的中点坐标相等,列出方程,求出横坐标值,最终得到正确的N点坐标【详解】(1)解:点在一次函数上,即把代入反比例函数解析式中得:,反比例函数解析式为,点是一次函数与反比例函数交点, 解得 或 点坐标为(3,1)(2)解:以AB为底,此时,若的面积有最小值,则有点P到AB的距离最短由平移可知,当一次函数平移到与反比例函数的第三象限图像仅有一个交点时,此时满足条件,如图所示不妨设平移后的直线为,设直线的解析式为:(), 联立直线与反比例函数解析式可得:, 消去整理可得:, 直线与反比例函数仅有一个第三象限的交点P, 解得:, 再将代入上述方程组,解得: ,点P坐标的为(,),过点P向直线AB作垂线,垂足为D,且直线AB的解析式为,设直线PD解析式为, 点P在直线PD上, 解得:, 直线PD解析式为, 不妨设点D(,),点D在直线AB上, 解得:, D点坐标为(,) P(,),(3,1),(1,3),利用两点间距离公式可得:, ,故面积最小值为(3)解:由题意可设M点坐标为(,0),N点坐标为(,),若以点A,B,M,N为顶点的四边形能组成平行四边形,则有三种情况若平行四边形是,此时,AN和BM为对角线,由中点坐标可知:AN的中点坐标为,BM的中点坐标为,平行四边形的对角线互相平分,即对角线中点重合, 解得: ,N点坐标为(,)若平行四边形是,此时,AB和MN为对角线,由中点坐标可知:AB的中点坐标为(,),MN的中点坐标为,平行四边形的对角线互相平分,即对角线中点重合, 解得: ,N点坐标为(,)若平行四边形是,此时,AM和BN为对角线,由中点坐标可知:AM的中点坐标为,BN的中点坐标为平行四边形的对角线互相平分,即对角线中点重合, 解得: ,N点坐标为(,)综上所述:N点坐标为(,)或(,)或(,)【点睛】本题属于综合性题目,主要是考察了一次函数和反比例函数的综合应用以及平行四边形的性质,熟练地掌握函数的相关知识以及利用特殊四边形的性质进行求解,是解决此类问题的关键5、(1),或;(2)【分析】(1)先把A点坐标代数 (m0)求出m得到反比例函数解析式,然后利用待定系数法求出k的值,然后根据图象即可求得当y1y2时,x的取值范围;(2)先利用一次函数解析式确定M点坐标,然后根据三角形面积公式求解【详解】解:反比例函数的图象经过点,反比例函数的表达式为点在反比例函数图象上,点的坐标为一次函数的图象经过点和点,解得,观察图象,当时,的取值范围或;故答案为:,或;一次函数与轴的交点为,令x=0,y=1【点睛】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积以及函数与不等式的关系,数形结合是解题的关键