精品试题北师大版八年级数学下册第三章图形的平移与旋转章节测试试卷(精选).docx
-
资源ID:32548622
资源大小:963.14KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载

会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
精品试题北师大版八年级数学下册第三章图形的平移与旋转章节测试试卷(精选).docx
八年级数学下册第三章图形的平移与旋转章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D62、如图,将绕点按顺时针旋转一定角度得到,点的对应点点恰好落在边上,若,则的长为( )A3B2CD13、如图,ABC中,C=84°,CBA=56°,将ABC挠点B旋转到DBE,使得DE/AB,则EBC的度数为( )A28°B40°C42°D50°4、已知点A(2,a)和点B(2,3)关于原点对称,则a的值为( )A2B2C3D35、如图,在ABC中,ACB90°,BAC20°,将ABC绕点C顺时针旋转90°得到A'B'C',点B的对应点B'在边AC上(不与点A,C重合),则AA'B'的度数为()A20°B25°C30°D45°6、下列图形中,既是中心对称图形也是轴对称图形的是( )A圆B平行四边形C直角三角形D等边三角形7、下列图形中,是中心对称图形的是( )ABCD8、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( )ABCD9、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD10、下列图形中,可以看作是中心对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点的坐标是_2、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 _3、点P(1,2)关于原点中心对称的点的坐标为_4、如图,ABC中,ACB=90°,A=28°,若以点C为旋转中心,将ABC逆时针旋转到DEC的位置,点在边DE上,则旋转角的度数是_5、正方形ABCD在坐标系中的位置如图所示A(0,3),B(2,4),C(3,2),D(1,10)将正方形ABCD绕D点旋转90°后,点B到达的位置坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1)(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 2、如图1,平面直角坐标系中,直线yx+m交x轴于点A(4,0),交y轴正半轴于点B,直线AC交y轴负半轴于点C,且BCAB(1)求线段AC的长度(2)P为线段AB(不含A,B两点)上一动点如图2,过点P作y轴的平行线交线段AC于点Q,记四边形APOQ的面积为S,点P的横坐标为t,当S时,求t的值M为线段BA延长线上一点,且AMBP,在直线AC上是否存在点N,使得PMN是以PM为直角边的等腰直角三角形?若存在,直接写出点N的坐标;若不存在,请说明理由3、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2)(1)画出ABC关于原点O对称的A1B1C1(2)求A1B1C1的面积4、如图,在ABC中,BAC120°,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,求证:ADC是等边三角形5、已知点P(3a15,2a)(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标-参考答案-一、单选题1、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键2、B【分析】由直角三角形的性质可得AB2,BC2AB4,由旋转的性质可得ADAB,可证ADB是等边三角形,可得BDAB2,即可求解【详解】解:,BAC90°C=90°-BC2ABBC2=AC2+AB2AB2,BC2AB4,RtABC绕点A按顺时针旋转一定角度得到RtADE,ADAB,且B60°ADB是等边三角形BDAB2,CDBCBD422故选:B【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,熟练运用旋转的性质是本题的关键3、B【分析】先求出A=40°,再根据旋转和平行得出DBA=40°,进而可求EBC的度数【详解】解:ABC中,C=84°,CBA=56°,A=180°-C -CBA=40°,由旋转可知,D=A=40°,EBC=DBA,DE/AB,D=DBA=40°,EBC=DBA=40°,故选:B【点睛】本题考查了旋转的性质和平行线的性质,解题关键是熟记旋转的性质,准确识图,正确进行推导计算4、C【分析】根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值【详解】解:点A(2,a)和点B(2,3)关于原点对称,a3,故选:C【点睛】此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键5、B【分析】由旋转知ACA'C,BACCA'B',ACA'90°,从而得出ACA'是等腰直角三角形,即可解决问题【详解】解:将ABC绕点C顺时针旋转90°得到A'B'C,ACA'C,BACCA'B',ACA'90°,ACA'是等腰直角三角形,CA'A45°,BAC20°,CA'B'20°,AA'B'25°故选:B【点睛】本题主要考查了图形的旋转,等腰直角三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键6、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A圆既是中心对称图形也是轴对称图形,故此选项符合题意;B平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;C直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;D等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合7、D【详解】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键8、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;B、此图形不是中心对称图形,故此选项不符合题意;C、此图形是中心对称图形,故此选项符合题意;D、此图形不是中心对称图形,故此选项不符合题意故选:C【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心9、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合10、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形故本选项正确故选:A【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键二、填空题1、【分析】首先根据是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据中心对称的性质,分别求出点、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可【详解】解:是边长为2的等边三角形,的坐标为:,的坐标为:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,的横坐标是:,的横坐标是:,当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,顶点的纵坐标是:,是正整数)的顶点的坐标是:,的顶点的横坐标是:,纵坐标是:,故答案为:【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键2、(1,1)【分析】先利用勾股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标【详解】点A的坐标为(1,0),OA1,四边形OABC是正方形,OAB90°,ABOA1,B(1,1),连接OB,如图:由勾股定理得:OB,由旋转的性质得:OBOB1OB2OB3,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到AOBBOB1B1OB245°,B1(0,),B2(1,1),B3(,0),B4(1,1),B5(0,),B6(1,1),发现是8次一循环,则2022÷82526,点B2022的坐标为(1,1),故答案为:(1,1)【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键3、(-1,-2)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y)据此作答【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2)故答案为:(-1,-2)【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键4、56°【分析】直接利用旋转的性质得出EC=BC,进而利用三角形内角和定理得出E=ABC=62°,即可得出ECB的度数,得出答案即可【详解】解:以点C为旋转中心,将ABC旋转到DEC的位置,点B在边DE上,EC=BC,ACB=90°,A=28°,E=ABC=62°,EBC=62°,ECB=180°-62°-62°=56°,则旋转角的度数是56°故答案为:56°【点睛】此题主要考查了旋转的性质以及三角形内角和定理,得出E=ABC的度数是解题关键5、 (4,0)或(2,2)【分析】利用网格结构找出点B绕点D旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可【详解】解:如图,点B绕点D旋转90°到达点B或B,点B的坐标为(4,0),B(2,2)故答案为:(4,0)或(2,2)【点睛】本题主要考查了坐标与图形变化旋转,解题的关键在于能够利用数形结合的思想进行求解三、解答题1、(1)见解析;(2)见解析;(3)(a5,b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出ABC(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论【详解】解:(1)如图,ABC即为所画(2)如图,A1B1C1即为所画(3)点P(a,b)向左平移5个单位后的坐标为(a5,b),关于x轴对称手点的坐标为(a5,b) 故答案为:(a5,b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置2、(1);(2);存在一点或,使是以MN为直角边的等腰直角三角形【分析】(1)把代入一次函数解析式即可确定一次函数解析式为,得到,由勾股定理确定,求出,即求得,在RtAOC中,利用勾股定理即可得出结果;(2)设,利用待定系数法直线AC的解析式为,由,根据代入数值即可求出t的值;当N点在轴下方时,得到,设,过P点作直线轴,作,根据全等三角形的判定定理可得:,得到,再证明,得到,求得,则,根据,得到,列出方程求出a即可得到点N的坐标;当N点在x轴上方时,点与N关于对称,得到点N的坐标【详解】(1)把代入得:,一次函数解析式为,令,得,在中,在RtAOC中,;(2)设,P在线段AB上,设直线AC的解析式为,代入,得:,又轴,则,又,得如图所示,当N点在轴下方时,是以PM为直角边的等腰直角三角形,当时,设,过P点作直线轴,作,在与中,在与中,作,则,M在直线AB上,当N点在x轴上方时,如图所示:点与关于对称,则,即,综上:存在一点或,使是以MN为直角边的等腰直角三角形【点睛】题目主要是考查一次函数的综合题,待定系数法求函数解析式,直线所成三角形的面积,等腰直角三角形的性质,勾股定理,三角形全等的判定及性质,中心对称的点的性质,熟练掌握各知识点综合运用是解题的关键3、(1)图形见解析;(2)5【分析】(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;(2)利用割补法求A1B1C1面积【详解】(1)ABC关于原点O对称的A1B1C1位置如图:(2)【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点4、见解析【分析】根据三角形旋转得出 ,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等边三角形判定定理得出为等边三角形【详解】证明:绕点C逆时针旋转得到, ,点A,D,E在同一条直线上,为等边三角形【点睛】本题考查三角形旋转性质,三点共线,领补角定义,等边三角形判定,掌握三角形旋转性质,三点共线,领补角定义,等边三角形判定是解题关键5、(1)或;(2)或;(3)或【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案【详解】解:(1)点到轴的距离是1,且,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,解得,点的横、纵坐标都是整数,或,当时,则点的坐标为,当时,则点的坐标为,综上,点的坐标为或【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键