2022年沪教版(上海)六年级数学第二学期第八章长方体的再认识同步练习试卷(精选).docx
-
资源ID:32551373
资源大小:251.22KB
全文页数:18页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年沪教版(上海)六年级数学第二学期第八章长方体的再认识同步练习试卷(精选).docx
六年级数学第二学期第八章长方体的再认识同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是由5个相同的小正方体和1个圆锥组成的立体图形,这个立体图形的主视图是( )ABCD2、下列展开图不能叠合成无盖正方体的是()ABCD3、下面的几何体的左视图是( )ABCD4、如图,以下三个图形是由立体图形展开得到的,相应的立体图形的顺次是()A正方体、圆柱、三棱锥B正方体、三棱锥、圆柱C正方体、圆柱、三棱柱D三棱锥、圆锥、正方体5、一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是( )ABCD6、下列四个图形中,主视图、左视图和俯视图相同的是( )ABCD7、如图所示的几何体的主视图为( )ABCD8、将一个等腰三角形绕它的底边旋转一周得到的几何体为()ABCD9、一个几何体如图所示,它的左视图是( )ABCD10、如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为( )A圆锥,正方体,三棱锥,圆柱B正方体,圆锥,四棱锥,圆柱C正方体,圆锥,四棱柱,圆柱D正方体,圆锥,圆柱,三棱柱第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一根80分米长的铁条,剪断后刚好可焊接成一个长8分米、宽5.5分米的长方体框架,那么这个长方体的高是_分米2、用一个平面去截下列几何体A球体B圆锥C圆柱D正三棱柱E长方体,得到的截面形状可能是三角形的有 _(写出正确序号)3、如图所示是一个正方体的展开图,在原正方体中与平面1平行的面是_,与平面5垂直的平面是_4、把一个长方体截成两个长方体后,棱的数量增加了_条5、已知一个直角三角形的两直角边分别是3和4,将这个直角三角形绕它的直角边所在直线旋转一周,可以得到圆锥,则圆锥的体积是_(,结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,在平整的地面上,用8个完全相同的小正方体堆成一个几何体,请画出从三个方向看到的几何体的形状图2、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体4长方体812正八面体812正十二面体201230(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_;(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_;(4)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱该多面体外表面三角形的个数为x个,八边形的个数为y个,求的值3、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件(1)这个零件的表面积是 (2)请按要求在边长为1网格图里画出这个零件的视图4、如图是用10块完全相同的小正方体搭成的几何体,小正方体的棱长为1(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭 块小正方体;(3)将该物体放在地面,将其表面涂色(与地面接触部分除外),涂色面积为 5、用若干个小立方块搭一几何体,使它从正面看和从上面看得到的图形如图所示从上面看得到的图形中小正方形里的字母表示在该位置小立方块的个数请问:(1)表示几?这个几何体由几个小立方块搭成?(2)画出该几何体从左面看得到的图形-参考答案-一、单选题1、C【分析】从正面看所得到的图形即为主视图,注意所有的看到的棱都应表现在主视图中【详解】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形,右边是一个三角形故选:C【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图2、C【分析】根据正方体的展开图,可得答案【详解】C中有两个正方形重合,无法叠合成无盖正方体,故C错误;故选:C【点睛】本题考查了正方体展开图的识别,熟悉正方体的展开图是解题关键3、D【分析】根据几何体的特点即可求解【详解】从左边看,第一排三个正方形,第二排两个,第三排一个 即故选【点睛】此题主要考查三视图的判断,解题的关键是熟知左视图的定义4、C【分析】根据正方体、圆柱、三棱柱表面展开图的特点解题【详解】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱故选:C【点睛】本题考查正方体、圆柱、三棱柱表面展开图,记住这些立体图形的表面展开图是解题的关键5、B【分析】主视图的列数与俯视图的列数相同,且每列小正方形的数目为俯视图中该列小正方数字中最大数字,从而可得出结论【详解】由已知条件可知:主视图有3列,每列小正方形的数目分别为4,2,3,根据此可画出图形如下:故选:B【点睛】本题考查了从不同方向观察物体和几何图像,是培养学生观察能力6、A【分析】分别分析正方体、圆柱、三棱柱、圆锥的主视图、左视图、俯视图,并判断各图形三视图是否相同,即可得到结论【详解】解:A、正方体的主视图、左视图、俯视图都是正方形,故本选项符合题意;B、圆柱的主视图、左视图是矩形,俯视图是圆,故本选项不合题意;C、三棱柱的主视图、左视图是矩形,俯视图是三角形,故本选项不合题意;D、圆锥的主视图、左视图是等腰三角形,俯视图是带圆心的圆,故本选项不合题意;故选:A【点睛】本题考查三视图,熟练掌握常见几何体的三视图,是解决问题的关键7、A【分析】根据主视图是从物体的正面看得到的视图即可求解【详解】解:主视图如下故选:A【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提8、B【分析】根据面动成体的原理:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥【详解】解:将一个等腰三角形绕它的底边旋转一周得到的几何体为两个底面相等的圆锥故选:B【点睛】此题主要考查几何体的形成,解决本题的关键是掌握各种面动成体的体的特征9、B【分析】根据左视图的定义即可求解【详解】由图可知左视图是故选B【点睛】此题主要考查三视图的判断,解题的关键是熟知左视图的定义10、D【分析】根据常见几何体的平面展开图判断即可【详解】解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱故选D【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键二、填空题1、6.5【分析】根据长方体棱长和棱长的知识点准确计算即可;【详解】(分米)故答案是6.5【点睛】本题主要考查了长方体棱与棱的位置关系和长方体认识,准确分析计算是解题的关键2、B,D【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形【详解】解:A球体不能截出三角形;B圆锥沿着母线截几何体可以截出三角形;C圆柱不能截出三角形;D正三棱柱能截出三角形故截面可能是三角形的有2个故答案为:B,D【点睛】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关3、平面3 平面1、2、3、4 【分析】根据正方体中与平面1平行的面是与平面1相对的面,和平面5相交的面与平面5垂直根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与平面1平行的面是与平面1相对的面,所以与平面1平行的面是:平面3在正方体中和平面5相交的面与平面5垂直所以与平面5垂直的平面是:平面1、2、3、4故答案为:平面3,平面1、2、3、4,【点睛】本题主要考查了正方体的展开图认识立体图形的知识,属于基础题,解答本题的关键是掌握长方体的特点,从相对面和邻面入手,分析及解答问题4、12【分析】把一个长方体截成两个长方体之后,棱长个数从一个长方体的棱长个数变成两个长方体的棱长个数【详解】一个长方体棱长个数是12,截成两个之后棱长个数变成24,所以增加了12条故答案是:12【点睛】本题考查长方体棱的性质,解题的关键是熟悉长方体棱的个数5、12或16或12【分析】分两种情况:以直角边为3所在直线旋转一周得到一个圆锥,底面半径是4,高是3,然后利用圆锥的体积公式,计算即可;以直角边为4所在直线旋转一周得到一个圆锥,底面半径是3,高是4,然后利用圆锥的体积公式,计算即可【详解】解:一个直角三角形的两直角边分别是3和4,以直角边为3所在直线旋转一周得到一个圆锥,底面半径是4,高是3,所以,以直角边为4所在直线旋转一周得到一个圆锥,底面半径是3,高是4,所以,故答案为:12或16【点睛】此题考查了点、线、面、体中的面动成体,解题关键是:分两种情况以直角边为3所在直线旋转一周得到一个圆锥,以直角边为4所在直线旋转一周得到一个圆锥,三、解答题1、画图见解析【分析】根据三视图的定义画出图形即可【详解】解:三视图如图所示:【点睛】本题考查作图-三视图,解题的关键是建立空间观念,正确画出图形2、(1)4,6,6,6;(2);(3)20;(4)14【分析】(1)根据上面多面体模型,直接计数可得答案;(2)根据表格中多面体的顶点数(V)、面数(F)、棱数(E)归纳可得答案;(3)设这个多面体的面数为,则顶点数为: 再根据列方程,解方程可得答案;(4)先求解多面体的棱的总数,再根据求解多面体的面数,从而可得的值.【详解】解:(1)根据上面多面体模型,可得:多面体顶点数(V)面数(F)棱数(E)四面体 4 长方体8 12正八面体 812正十二面体201230故答案为:4,6,6,6;(2)从以上表格数据归纳可得:顶点数(V)+面数(F)=棱数(E)+2,即:.故答案为:(3)设这个多面体的面数为,则顶点数为: 即这个多面体的面数为 故答案为: (4) 简单多面体的外表面是由三角形和八边形两种多边形拼接而成,有24个顶点,每个顶点处都有3条棱 共有条棱,设总面数为: 即【点睛】本题考查的是简单多面体的顶点数(V),面数(F),棱数(E)之间的关系,考查探究规律分基本方法,以及应用规律解决实际问题,掌握从具体到一般探究规律的方法及运用规律是解题的关键.3、(1)24;(2)见解析【分析】(1)几何体的表面积与原来相同,根据正方体的表面积公式计算即可求解;(2)根据几何体画出从左面、上面看所得到的图形即可【详解】解:(1)2×2×624这个零件的表面积是24,故答案为:24(2)如图所示:【点睛】本题考查了三视图,解题关键是树立空间观念,准确识图,认真计算4、(1)见解析;(2)3;(3)32【分析】(1)根据三视图的画法分别画出从正面、左面、上面看该组合体所看到的图形即可;(2)根据俯视图,在相应位置添加小立方体,直至主视图不变为止;(3)根据三视图的面积以及遮挡的面积进行计算即可【详解】解:(1)该组合体的三视图如图所示:(2)在俯视图的相应位置最多添加相应数量的正方体,如图所示:故答案为:3;(3)主视图的面积为6,左视图的面积为6,俯视图的面积为6,所以涂色的面积为(6+6)×2+6+232故答案为:32【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键5、(1)x=1,由7个小立方块搭成(2)见解析【分析】(1)根据主视图和俯视图之间的关系,可得到x的值,故可求出几何体的小立方块的个数;(2)根据左视图的特点即可作图 【详解】解:(1)由主视图和俯视图之间的关系,可得x=1小立方块的个数为6+1=7个;(2)从左面看得到的图形如下:【点睛】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”