欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年度北师大版九年级数学下册第二章二次函数同步练习试卷(无超纲带解析).docx

    • 资源ID:32551727       资源大小:1,008.44KB        全文页数:29页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年度北师大版九年级数学下册第二章二次函数同步练习试卷(无超纲带解析).docx

    北师大版九年级数学下册第二章二次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点在二次函数的图象上,则下列各点中,一定在二次函数图象上的是( )ABCD2、在同一平面直角坐标系xOy中,一次函数y2x与二次函数的图象可能是()ABCD3、在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b > 3若m2 - bm > 2 - b,m < ,则点M的横坐标m的取值范围是 ( )A0 < m < Bm < C < m < Dm < 4、抛物线的对称轴为直线( )ABCD5、若点A(1,y1),B(2,y2),C(m,y3)在抛物线y=(a0)上,且y1y2y3,则m的值不可能是()A5B3C3D56、抛物线的顶点坐标是( )ABCD7、二次函数的图象的顶点坐标是( )ABCD8、下图是抛物线y = ax2 + bx + c的示意图,则a的值可以是( )A1B0C- 1D- 29、下列选项中是二次函数的是( )ABCD10、二次函数的图象与轴的交点的横坐标分别为-1和3,则的图象与轴的交点的横坐标分别为( )A-3和1B1和5C-3和5D3和5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知P(,),Q(,)两点都在抛物线上,那么_2、如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x2,点C在抛物线上,且位于点A、B之间(C不与A、B重合)若ABC的周长为5,则四边形AOBC的周长为 _3、抛物线的对称轴及部分图象如图所示,则关于x的一元二次方程的两根为_4、二次函数(h、k均为常数)的图象经过A(2,y1)、B(0,y2)、C(2,y3)三点,若y2y1y3,则h的取值范围是_5、若抛物线yx2axb与x轴两个交点间的距离为2,对称轴为直线x1,则抛物线的解析式为_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点,点在第三象限的抛物线上,直线经过点、点,点的横坐标为(1)如图1,求抛物线的解析式;(2)如图2,直线交轴于点,过点作轴,交轴于点,交抛物线于点,过点作,交直线于点,求线段的长;(3)在(2)的条件下,点在上,直线交于点,点在第二象限,连接交于点,连接,点在的延长线上,点在直线上,且点的横坐标为5,连接,求点的纵坐标 2、如图,将小球从地面击出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度(单位:)与飞行时间(单位:)之间具有函数关系:(1)小球的飞行高度能否达到?如果能,需要多少飞行时间?(2)直接写出小球从飞出到落地需要的时间;(3)小球的飞行高度能否达到?为什么?3、某数学兴趣小组根据学习函数的经验,对分段函数的图象与性质进了探究,请补充完整以下的探索过程x01234y010(1)填空:_,_(2)根据上述表格补全函数图象;写出一条该函数图象的性质:_(3)若直线与该函数图象有三个交点,直接写出t的取值范围4、如图,在平面直角坐标系中,二次函数yx2bxc的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4),点D的坐标为(0,2),点P为二次函数图象上的动点(1)求二次函数的解析式和直线AD的解析式;(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值5、在平面直角坐标系xOy中,是抛物线上两点(1)将写成的形式;(2)若,比较,的大小,并说明理由;(3)若,直接写出m的取值范围-参考答案-一、单选题1、A【分析】先把点A代入解析式得出,函数化为,然后把各点中的x的值代入解析式求函数值,看函数值是否等于各点的纵坐标即可【详解】解:点在二次函数的图象上,当x=-4时,故选项A在二次函数图象上;当x=-2时,故选项B不在二次函数图象上;当x=0时,故选项C不在二次函数图像上;当x=2时,故选项D不在二次函数图象上故选A【点睛】本题考查二次函数图象上点的特征,求函数值,掌握二次函数图象上点的特征是解题关键2、C【分析】先由一次函数的性质判断,然后结合二次函数中a0时,a0时,分别进行判断,即可得到答案【详解】解:一次函数y2x,一次函数的图像经过原点,且y随x的增大而增大,故排除A、B选项;在二次函数中,当a0时,开口向上,且抛物线顶点在y的负半轴上,当a0时,开口向下,且抛物线顶点在y的负半轴上,D不符合题意,C符合题意;故选:C【点睛】此题主要考查了二次函数与一次函数图象,利用二次函数的图象和一次函数的图象的特点求解3、B【分析】由m2 - bm > 2 - b,得到m2 - bm - 2 +b=0,因式分解得,进而判断出,故当m2 - bm - 2 +b>0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm > 2 - b, m2 - bm - 2 +b>0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且x1<x2),则当y>0时,x< x1,或x>x2,令x=m,则y= m2 - bm - 2 +b=0,解得,即,当m2 - bm - 2 +b>0时,或,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.4、A【分析】先把抛物线化为顶点式的形式,再进行解答即可【详解】解:抛物线y=x2+4x-8可化为y=(x+2)2-12,抛物线的对称轴是直线x=-2故选:A【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键二次函数的顶点式为,则抛物线的对称轴为直线,顶点坐标为(,) 5、C【分析】根据二次函数的解析式可得出二次函数的对称轴为x=-1,分两种情况讨论,根据图象上点的坐标特征,得到关于m的不等式,解不等式即可得出结论【详解】解:抛物线y=的对称轴为x=-1,点A(1,y1),B(2,y2),C(m,y3)在抛物线y=上,且y1y2y3,当a0,在对称轴的右侧y随x的增大而减小,点A、B都在对称轴右侧,而y1y2,所以这种情况不存在;当a0,则|m+1|>(2+1)=3,解得m-4或m>2,m的值不可能是-3故选:C【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是根据二次函数的性质找出关于m的一元一次不等式本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质结合二次函数的对称轴找出不等式是关键6、A【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键7、D【分析】直接根据二次函数的顶点式写出顶点坐标即可【详解】解:抛物线解析式为 , 其顶点坐标为(3,1),故选D【点睛】本题考查了二次函数顶点式的性质,正确理解知识点是解题的关键8、A【分析】根据二次函数的图象确定a的取值范围即可得【详解】解:根据二次函数图象可得:开口向上,故选:A【点睛】题目主要考查根据函数图象确定二次函数字母系数的取值范围,熟练掌握二次函数图象的基本性质是解题关键9、C【分析】根据二次函数的定义逐项分析即可,二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数【详解】解:A、yx+1,是一次函数,不是二次函数,故该选项不符合题意;B、,是反比例函数,不是二次函数,故该选项不符合题意;C、,是二次函数,故该选项符合题意;D、 ,是一次函数,不是二次函数,故该选项不符合题意;故选C【点睛】本题考查了二次函数的定义,理解二次函数的定义是解题的关键10、A【分析】根据二次函数图象的平移规律可得交点的横坐标【详解】解:二次函数的图象与x轴的交点的横坐标分别为-1和3的图象与x轴的交点的横坐标分别为:-1-2-3和3-21故选:A【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用平移的性质和点的坐标平移的性质解答二、填空题1、4【分析】根据P(,),Q(,)的纵坐标相等,得出关于抛物线对称轴对称,即可求解【详解】解:P(,),Q(,)两点都在抛物线上,根据纵坐标相等得,P(,),Q(,)关于抛物线的对称轴对称,故答案是:4【点睛】本题考查了二次函数的图象的性质,解题的关键是掌握二次函数的对称性求解2、9【分析】根据抛物线的对称性得到:OB=4,AB=AO,则四边形AOBC的周长为:AO+AC+BC+OB=ABC的周长+OB【详解】解:根据题意,对称轴为直线x=2,抛物线经过原点、x轴负半轴交于点B,OB=4,由抛物线的对称性知AB=AO,四边形AOBC的周长为AO+AC+BC+OB=ABC的周长+OB=5+4=9故答案为:9【点睛】本题考查了二次函数的性质此题利用了抛物线的对称性,解题的技巧性在于把求四边形AOBC的周长转化为求(ABC的周长+OB)是值3、故答案为:-2; 【点睛】本题考查了二次函数的三种形式:一般式:yax2bxc(a,b,c是常数,a0); 顶点式:ya(xh)2k(a,h,k是常数,a0),其中(h,k)为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为(h,k);交点式:ya(xx1)(xx2)(a,b,c是常数,a0),该形式的优势是能直接根据解析式得到抛物线与x轴的两个交点坐标(x1,0),(x2,0)3,【分析】利用图象法可得,再根据抛物线的对称性求得,即可求解【详解】解:根据图象可得:抛物线与x轴的交点为,对称轴为方程的解为,故答案为:,【点睛】本题考查了用图象法解一元二次方程的问题,掌握图象法解一元二次方程的方法、抛物线的性质是解题的关键4、【分析】首先判定出二次函数开口向上,对称轴为,然后根据二次函数的增减性求解即可【详解】解:二次函数(h、k均为常数),二次函数开口向上,对称轴为,图象经过A(2,y1)、B(0,y2)、C(2,y3)三点,由y2y1y3可得,点A离对称轴比点B离对称轴远,点C离对称轴比点A离对称轴远,解得:故答案为:【点睛】此题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质5、【分析】根据题意两个交点间的距离为2,对称轴为直线,可确定抛物线与x轴的两个交点,然后代入解析式求解即可得【详解】解:两个交点间的距离为2,对称轴为直线,抛物线与x轴两个交点的坐标为:,将两个点代入抛物线解析式可得:,解得:,解析式为:,故答案为:【点睛】题目主要考查二次函数的基本性质,理解题意,得出抛物线与x轴的两个交点是解题关键三、解答题1、(1)抛物线的解析式为:;(2);(3)点N的纵坐标为5【分析】(1)根据题意可得一次函数图象经过A、D两点,所以当及当时,可确定A、D两点坐标,然后代入抛物线解析式求解即可确定;(2)根据题意当时,代入抛物线解析式确定点P的坐标,求得,然后求出直线与y轴的交点T,利用勾股定理确定,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P作轴,且,即,利用相似三角形的性质可确定,求出直线GF的函数解析式,过点M作轴,设且,可求得MF的长度,设直线MP的函数解析式为:,将点,代入即可确定点的坐标,求出,根据题意即可确定点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,利用相似三角形及勾股定理即可得出结果【详解】解:(1)经过A、D两点,当时,解得,当时,将A、D两点代入抛物线解析式可得:,解得:,抛物线的解析式为:;(2)当时,解得:,直线解析式,当时,在RtAOT中,轴,轴,AOTDQP,即;(3)如图所示:过点P作轴,且,即,FGOFPS,设直线GF的函数解析式为:,可得:,解得:,直线GF的函数解析式为:,过点M作轴,设且,即,设直线MP的函数解析式为:,将点,代入可得:可得:,解得:,点,解得:,点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,NMINRJ,设,则,代入化简可得:,联立求解可得:,点N的纵坐标为5【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键2、(1)能,当飞行时间为和时,小球的飞行高度能达到;(2)小球从飞出到落地需要的时间为;(3)不能理由见解析【分析】(1)由h=15解一元二次方程即可解答;(2)由h=0解一元二次方程即可解答;(3)由h=20.5解一元二次方程即可解答;【详解】解:(1)小球的飞行高度能达到,由h=15得:,即:,解得:,当飞行时间为和时,小球的飞行高度能达到;(2)由h=0得:,即:,解得:,小球从飞出到落地需要的时间为;(3)小球的飞行高度不能达到,理由为:由h=20.5得:,即,=-42-4×4.1=-0.4<0,该方程无实数根,即飞行高度达不到.【点睛】本题考查二次函数的实际应用、解一元二次方程,熟练掌握二次函数的性质和一元二次方程的解法是解答的关键3、(1),1;(2)作图见解析;当时,y随x增大而减少;(3)【分析】(1)将表格中的数据代入解析式即可求得k、b的值.(2)描点画图即可,由图象可得函数图象性质,答案不唯一(3)求出直线与抛物线有两个交点的t的取值范围,若直线与该函数图象有三个交点,则曲线y=至少与直线有一个交点才可满足,即可由此得出t的取值范围【详解】解:(1)将(1,0)代入则解得b=-4将(0,)代入则解得k=1(2)函数图象如图所示,函数性质:如:当时,y随x增大而减少答案不唯一(3)联立得即令即即当时,直线与抛物线有两个交点当过点(1,0)时与y=有一个交点,此时直线与该函数图象有三个交点将点(1,0)代入1+t=0解得此时t=-1则此时直线解析式为由图像可知,直线再向下移动则与y=没有交点直线与抛物线最多有两个交点直线与曲线y=至少一个交点故综上所述时,直线与该函数图象有三个交点【点睛】本题考查了一次函数、反比例函数以及二次函数,熟悉一次函数、反比例函数以及二次函数的图象及其性质,结合图象计算交点个数,运用数形结合方法是解题的关键4、(1)yx23x4,;(2)【分析】(1)利用待定系数法将B(1,0),C(0,4)代入二次函数yx2bxc即可求出二次函数的解析式,令y0,可求出A点坐标,然后设直线AD的解析式为ykxb,利用待定系数法将A点坐标和D点坐标代入ykxb即可求出直线AD的解析式;(2)连接PD,作PGy轴交AD于点G,根据题意设出点P和点G的坐标,然后表示出线段PG的长度,进而根据表示出平行四边形APED的面积,最后根据二次函数的性质求解即可【详解】解:(1)将B(1,0),C(0,4)代入yx2bxc中,得,解得,二次函数的解析式为yx23x4在yx23x4中,令y0,即,解得x14,x21,A(4,0)设直线AD的解析式为ykxb'D(0,2),解得:直线AD的解析式为(2)连接PD,作PGy轴交AD于点G,如图所示设P(t,t23t4)(4t0),则G(t,),40,4t0,当时,S有最大值【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数中有关面积的综合题,解题的关键是熟练掌握待定系数法求函数表达式,根据题意设出点的坐标表示出平行四边形APED的面积5、(1);(2);(3)或【分析】(1)利用完全平方公式可直接得出;(2)当时,确定函数解析式,将点,代入确定,然后比较大小即可;(3),代入函数解析式,令,当时,求解可得,结合函数图象可得时,m的取值范围,即为时,m的取值范围【详解】解:(1),;(2)当时,;(3)由题意可得:,令当时,解得:,结合函数图象可得:当时,或,当时,m的取值范围为:或【点睛】题目主要考查二次函数化为顶点式,函数值比较大小解不等式等,理解题意,熟练运用顶点式是解题关键

    注意事项

    本文(2021-2022学年度北师大版九年级数学下册第二章二次函数同步练习试卷(无超纲带解析).docx)为本站会员(可****阿)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开